BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 4841066)

  • 1. Fluorine nuclear magnetic resonance studies of trifluoroacetyl-insulin derivatives. Effects of pH on conformation and aggregation.
    Paselk RA; Levy D
    Biochemistry; 1974 Jul; 13(16):3340-6. PubMed ID: 4841066
    [No Abstract]   [Full Text] [Related]  

  • 2. Preparation of several trifluoroacetyl insulin derivatives.
    Paselk RA; Levy D
    Biochim Biophys Acta; 1974 Aug; 359(2):215-21. PubMed ID: 4859448
    [No Abstract]   [Full Text] [Related]  

  • 3. Fluorine nuclear magnetic resonance studies of trifluoroacetylinsulin derivatives. Effects of salts and denaturants.
    Paselk RA; Levy D
    Biochim Biophys Acta; 1976 Aug; 439(2):479-91. PubMed ID: 8120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of some acyl derivatives of -casein.
    Evans MT; Irons L; Petty JH
    Biochim Biophys Acta; 1971 Aug; 243(2):259-72. PubMed ID: 5122660
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic resonance studies of protein-small molecule interactions. Binding of N-trifluoroacetyl-D-(and L-)-p-fluorophenylalanine to -chymotrypsin.
    Gammon KL; Smallcombe SH; Richards JH
    J Am Chem Soc; 1972 Jun; 94(13):4573-80. PubMed ID: 5036166
    [No Abstract]   [Full Text] [Related]  

  • 6. Use of resonance interaction in the study of the chain folding of insulin in solution.
    Mercola DA; Morris JW; Arquilla ER
    Biochemistry; 1972 Oct; 11(21):3860-74. PubMed ID: 4673054
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of concanavalin A sugar binding site by 19F nuclear magnetic resonance.
    Alter GM; Magnuson JA
    Biochemistry; 1974 Sep; 13(19):4038-45. PubMed ID: 4412399
    [No Abstract]   [Full Text] [Related]  

  • 8. Nuclear-magnetic-resonance-spectroscopic studies of the amino groups of insulin.
    Bradbury JH; Brown LR
    Eur J Biochem; 1977 Jun; 76(2):573-82. PubMed ID: 19247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton-magnetic-resonance study of N-trifluoroacetyl-L-alanyl-L-phenylalaninal binding to alpha-chymotrypsin.
    Wyeth P; Sharma RP; Akhtar M
    Eur J Biochem; 1980 Apr; 105(3):581-5. PubMed ID: 6245886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trifluoroacetylated peptides as substrates and inhibitors of elastase: a nuclear magnetic resonance study.
    Dimicoli JL; Bieth J; Lhoste JM
    Biochemistry; 1976 May; 15(10):2230-6. PubMed ID: 1276135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of semisynthetically-introduced 13 C probes for nuclear magnetic resonance studies on insulin.
    Saunders DJ; Offord RE
    FEBS Lett; 1972 Oct; 26(1):286-8. PubMed ID: 4673945
    [No Abstract]   [Full Text] [Related]  

  • 12. Use of fluorine-19 nuclear magnetic resonance to study conformation changes in selectively modified ribonuclease S.
    Huestis WH; Raftery MA
    Biochemistry; 1971 Mar; 10(7):1181-6. PubMed ID: 5102781
    [No Abstract]   [Full Text] [Related]  

  • 13. The preparation and subsequent identification of a dehydroalanyl peptide from alkali-treated oxidised glutathione.
    Asquith RS; Carthew P
    Biochim Biophys Acta; 1972 Dec; 285(2):346-51. PubMed ID: 4659645
    [No Abstract]   [Full Text] [Related]  

  • 14. The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin.
    Zurawski VR; Foster JF
    Biochemistry; 1974 Aug; 13(17):3465-71. PubMed ID: 4858488
    [No Abstract]   [Full Text] [Related]  

  • 15. Co-oligopeptides of aromatic amino acids and glycine with a variable distance between the aromatic residues. VI. Circular dichroism studies of Co-oligopeptides of l-phenylalanine, L-tryptophan, and glycine.
    Rizzo V; Luisi P; Straub B; Guarnaccia R
    Biopolymers; 1977 Feb; 16(2):449-60. PubMed ID: 12843
    [No Abstract]   [Full Text] [Related]  

  • 16. Intrinsic catalytic activity of the zymogen, bovine procarboxypeptidase A. A kinetic study using fluorine analogues.
    Canonici P; Behnke WD
    Biochem Biophys Res Commun; 1974 Feb; 56(3):575-9. PubMed ID: 4857054
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzyme-inhibitor interactions studied via fluorine magnetic resonance. II. Model for the trifluoroacetylphenylalanine-alpha-chymotrypsin interaction.
    Zeffren E
    Arch Biochem Biophys; 1970 Mar; 137(1):291-3. PubMed ID: 5435065
    [No Abstract]   [Full Text] [Related]  

  • 18. Use of 19 F-nuclear magnetic resonance spectroscopy for detection of protein conformation changes: application to lysozyme, ribonuclease and hemoglobin.
    Raftery MA; Huestis WH; Millett F
    Cold Spring Harb Symp Quant Biol; 1972; 36():541-50. PubMed ID: 4508166
    [No Abstract]   [Full Text] [Related]  

  • 19. An application of transient nuclear magnetic resonance methods to the measurement of biological exchange rates. The interaction of trifluoroacetyl-D-phenylalanine with the chymotrypsins.
    Sykes BD
    J Am Chem Soc; 1969 Feb; 91(4):949-55. PubMed ID: 5778277
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis and conformational studies of model histones. Sequential and random polypeptides with the composition L-lysyl-L-alanyl-glycine.
    Cernosek SF; Malin M; Wells M; Fasman GD
    Biochemistry; 1974 Mar; 13(6):1252-64. PubMed ID: 4814724
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.