These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4841617)

  • 1. Beveling of fine micropipette electrodes by a rapid precision method.
    Brown KT; Flaming DG
    Science; 1974 Aug; 185(4152):693-5. PubMed ID: 4841617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for beveling micropipettes for intracellular recording and current injection.
    Tauchi M; Kikuchi R
    Pflugers Arch; 1977 Mar; 368(1-2):153-5. PubMed ID: 558588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technique for precision beveling of relatively large micropipettes.
    Brown KT; Flaming DG
    J Neurosci Methods; 1979 Mar; 1(1):25-34. PubMed ID: 544956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry beveling of micropipette electrodes.
    Baldwin DJ
    J Neurosci Methods; 1980 Apr; 2(2):153-61. PubMed ID: 7392668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thick slurry bevelling: a new technique for bevelling extremely fine microelectrodes and micropipettes.
    Lederer WJ; Spindler AJ; Eisner DA
    Pflugers Arch; 1979 Sep; 381(3):287-8. PubMed ID: 574638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumentation and technique for beveling fine micropipette electrodes.
    Brown KT; Flaming DG
    Brain Res; 1975 Mar; 86(1):172-80. PubMed ID: 1115993
    [No Abstract]   [Full Text] [Related]  

  • 8. Removal of a hydrogenated amorphous carbon film from the tip of a micropipette electrode using direct current corona discharge.
    Kakuta N; Okuyama N; Yamada Y
    Rev Sci Instrum; 2010 Feb; 81(2):025103. PubMed ID: 20192514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two types of bipolar microelectrodes for intraretinal use.
    Alferdinck JW; Valeton JM; Van Norren D
    J Neurosci Methods; 1981 Apr; 3(4):397-404. PubMed ID: 7242147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A method of rapid beveling of microelectrodes using vibration].
    Maĭskiĭ VA; Fridlianskii VIa
    Fiziol Zh (1978); 1989; 35(3):107-9. PubMed ID: 2737318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The jet stream microbeveler: an inexpensive way to bevel ultrafine glass micropipettes.
    Ogden TE; Citron MC; Pierantoni R
    Science; 1978 Aug; 201(4354):469-70. PubMed ID: 663670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ultrasonic grinding method for beveling micropipettes for electrophysiological measurements].
    Dendo I; Abe T
    Iyodenshi To Seitai Kogaku; 1983 Oct; 21(6):476-7. PubMed ID: 6678985
    [No Abstract]   [Full Text] [Related]  

  • 13. An ultracompliant glass microelectrode for intracellular recording.
    Fedida D; Sethi S; Mulder BJ; ter Keurs HE
    Am J Physiol; 1990 Jan; 258(1 Pt 1):C164-70. PubMed ID: 2301563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical responses of single cones in the retina of the turtle.
    Baylor DA; Fuortes MG
    J Physiol; 1970 Mar; 207(1):77-92. PubMed ID: 4100807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multimicroelectrode system composed of independent glass micropipettes with an eccentric tip structure for simultaneous intracellular recording.
    Saburi M; Yamada M; Shigematsu Y
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):656-8. PubMed ID: 1601448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sputtered gold microelectrode in combination with a multibarrelled micropipette: a low impedance extracellular recording electrode with the facility of iontophoresis.
    Goodchild CS; Crane RA; Bennett JA; Ford TW; Kidd C; McWilliam PN
    Electroencephalogr Clin Neurophysiol; 1987 Jul; 67(1):91-4. PubMed ID: 2439286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A device for beveling fine micropipettes.
    Proenza LM; Morton RE
    Physiol Behav; 1975 Apr; 14(04):511-3. PubMed ID: 1135297
    [No Abstract]   [Full Text] [Related]  

  • 18. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 19. Tip potential of open-tip glass microelectrodes: theoretical and experimental studies.
    Gagné S; Plamondon R
    Can J Physiol Pharmacol; 1983 Aug; 61(8):857-69. PubMed ID: 6627127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive electron microscopic examination with rotation of beveled micropipette electrode tips.
    Baldwin DJ
    J Neurosci Methods; 1980 Apr; 2(2):163-7. PubMed ID: 7392669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.