These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4843789)

  • 1. Ultrastructure and growth of the sea urchin tooth.
    Kniprath E
    Calcif Tissue Res; 1974 Mar; 14(3):211-28. PubMed ID: 4843789
    [No Abstract]   [Full Text] [Related]  

  • 2. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.
    Mao Y; Satchell PG; Luan X; Diekwisch TG
    Ann Anat; 2016 Jan; 203():38-46. PubMed ID: 26194158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization of the spicules of sea urchin embryos.
    Wilt FH
    Zoolog Sci; 2002 Mar; 19(3):253-61. PubMed ID: 12125922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
    Politi Y; Arad T; Klein E; Weiner S; Addadi L
    Science; 2004 Nov; 306(5699):1161-4. PubMed ID: 15539597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocrystals.
    Inoué S; Okazaki I
    Sci Am; 1977 Apr; 236(4):82-4, 86, 89-92. PubMed ID: 850783
    [No Abstract]   [Full Text] [Related]  

  • 6. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties.
    Stock SR
    Connect Tissue Res; 2014; 55(1):41-51. PubMed ID: 24437604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution.
    Ma Y; Aichmayer B; Paris O; Fratzl P; Meibom A; Metzler RA; Politi Y; Addadi L; Gilbert PU; Weiner S
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6048-53. PubMed ID: 19332795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins.
    Johnson AS; Ellers O; Lemire J; Minor M; Leddy HA
    Proc Biol Sci; 2002 Feb; 269(1488):215-20. PubMed ID: 11839189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.
    Veis A
    Front Biosci (Landmark Ed); 2011 Jun; 16(7):2540-60. PubMed ID: 21622194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineral-related proteins of sea urchin teeth: Lytechinus variegatus.
    Veis A; Barss J; Dahl T; Rahima M; Stock S
    Microsc Res Tech; 2002 Dec; 59(5):342-51. PubMed ID: 12430165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of calcite co-orientation in the sea urchin tooth.
    Killian CE; Metzler RA; Gong YU; Olson IC; Aizenberg J; Politi Y; Wilt FH; Scholl A; Young A; Doran A; Kunz M; Tamura N; Coppersmith SN; Gilbert PU
    J Am Chem Soc; 2009 Dec; 131(51):18404-9. PubMed ID: 19954232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.
    Ameye L; Hermann R; Dubois P
    J Struct Biol; 2000 Aug; 131(2):116-25. PubMed ID: 11042082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Polycristalline calcite in sea urchins (Echinodermata, Echinoidea)].
    Märkel K; Kubanek F; Willgallis A
    Z Zellforsch Mikrosk Anat; 1971; 119(3):355-77. PubMed ID: 5569052
    [No Abstract]   [Full Text] [Related]  

  • 14. The test skeletal matrix of the black sea urchin Arbacia lixula.
    Kanold JM; Immel F; Broussard C; Guichard N; Plasseraud L; Corneillat M; Alcaraz G; Brümmer F; Marin F
    Comp Biochem Physiol Part D Genomics Proteomics; 2015 Mar; 13():24-34. PubMed ID: 25617706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental biology meets materials science: Morphogenesis of biomineralized structures.
    Wilt FH
    Dev Biol; 2005 Apr; 280(1):15-25. PubMed ID: 15766744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored order: the mesocrystalline nature of sea urchin teeth.
    Goetz AJ; Griesshaber E; Abel R; Fehr T; Ruthensteiner B; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3885-98. PubMed ID: 24937138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor.
    Olszta MJ; Odom DJ; Douglas EP; Gower LB
    Connect Tissue Res; 2003; 44 Suppl 1():326-34. PubMed ID: 12952217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanics of Sea Urchin spines.
    Tsafnat N; Fitz Gerald JD; Le HN; Stachurski ZH
    PLoS One; 2012; 7(9):e44140. PubMed ID: 22984468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the periostracum on the shell structure of bivalve molluscs.
    Taylor JD; Kennedy WJ
    Calcif Tissue Res; 1969; 3(3):274-83. PubMed ID: 5798003
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.