These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 4844274)

  • 1. Physiology of sporeforming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis.
    Nickerson KW; Bulla LA
    Appl Microbiol; 1974 Jul; 28(1):124-8. PubMed ID: 4844274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis.
    Nickerson KW; St Julian G; Bulla LA
    Appl Microbiol; 1974 Jul; 28(1):129-32. PubMed ID: 4844275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of sporeforming bacteria associated with insects. 3. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation.
    Bulla LA; St Julian G; Rhodes RA
    Can J Microbiol; 1971 Aug; 17(8):1073-9. PubMed ID: 4938112
    [No Abstract]   [Full Text] [Related]  

  • 4. Physiology of sporeforming bacteria associated with insects. V. Tricarboxylic acid cycle activity and adenosine triphosphate levels in Bacillus popilliae and Bacillus thuringiensis.
    Yousten AA; Hanson RS; Bulla LA; Julian GS
    Can J Microbiol; 1974 Dec; 20(12):1729-34. PubMed ID: 4441983
    [No Abstract]   [Full Text] [Related]  

  • 5. Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle.
    Nickerson KW; De Pinto J; Bulla LA
    J Bacteriol; 1974 Jan; 117(1):321-3. PubMed ID: 4587611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology of sporeforming bacteria associated with insects: metabolism of Bacillus popilliae grown in third-instar Popillia japonica Newman larvae.
    St Julian G; Bulla LA; Hanson RS
    Appl Microbiol; 1975 Jul; 30(1):20-5. PubMed ID: 1147615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid metabolism during bacterial growth, sporulation, and germination: an obligate nutritional requirement in Bacillus thuringiensis for compounds that stimulate fatty acid synthesis.
    Nickerson tkw ; bulla LA
    J Bacteriol; 1975 Aug; 123(2):598-603. PubMed ID: 807563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of -endotoxin by Bacillus thuringiensis as a function of glucose concentrations.
    Scherrer P; Lüthy P; Trumpi B
    Appl Microbiol; 1973 Apr; 25(4):644-6. PubMed ID: 4699221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria as insect pathogens.
    Bulla LA
    Annu Rev Microbiol; 1975; 29():163-90. PubMed ID: 1180511
    [No Abstract]   [Full Text] [Related]  

  • 10. Commitment to sporulation in Bacillus megaterium and uptake of specific compounds.
    Cooney PH; Freese E
    J Gen Microbiol; 1976 Aug; 96(2):381-90. PubMed ID: 822129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of sporeforming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae.
    Julian GS; Bulla LA
    J Bacteriol; 1971 Nov; 108(2):828-34. PubMed ID: 4331499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex.
    Freese E; Fortnagel U
    J Bacteriol; 1969 Sep; 99(3):745-56. PubMed ID: 4984174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundant growth and sporulation of Bacillus sphaericus NCA Hoop 1-A-2 in a chemically defined medium.
    Chan EC; Rutter PJ; Wills A
    Can J Microbiol; 1973 Jan; 19(1):151-4. PubMed ID: 4631047
    [No Abstract]   [Full Text] [Related]  

  • 14. Growth & toxicity of Bacillus thuringiensis var israelensis.
    Desai SY; Shethna YI
    Indian J Med Res; 1989 Sep; 89():314-21. PubMed ID: 2628294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in free amino acid production and intracellular amino acid pools of Bacillus licheniformis as a function of culture age and growth media.
    Clark VL; Peterson DE; Bernlohr RW
    J Bacteriol; 1972 Nov; 112(2):715-25. PubMed ID: 5086658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology of sporeforming bacteria associated with insects. I. Glucose catabolism in vegetative cells.
    Bulla LA; St Julian G; Rhodes RA; Hesseltine CW
    Can J Microbiol; 1970 Apr; 16(4):243-8. PubMed ID: 5445343
    [No Abstract]   [Full Text] [Related]  

  • 17. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids.
    Buono F; Testa R; Lundgren DG
    J Bacteriol; 1966 Jun; 91(6):2291-9. PubMed ID: 4957615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BIOCHEMICAL CHANGES OCCURRING DURING SPORULATION OF BACILLUS CEREUS T. II. EFFECT OF ESTERS OF ORGANIC ACIDS ON SPORULATION.
    GOLLAKOTA KG; HALVORSON HO
    J Bacteriol; 1963 Jun; 85(6):1386-93. PubMed ID: 14047234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EFFECT OF SPORULATION MEDIUM ON HEAT RESISTANCE, CHEMICAL COMPOSITION, AND GERMINATION OF BACILLUS MEGATERIUM SPORES.
    LEVINSON HS; HYATT MT
    J Bacteriol; 1964 Apr; 87(4):876-86. PubMed ID: 14137627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of development of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in mosquito larvae.
    Pantuwatana S; Sattabongkot J
    J Invertebr Pathol; 1990 Mar; 55(2):189-201. PubMed ID: 1969455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.