BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 48443)

  • 21. A fine structural study on the extracellular activity of alkaline phosphatase and its role in calcification.
    Salomon CD
    Calcif Tissue Res; 1974; 15(3):201-12. PubMed ID: 4212885
    [No Abstract]   [Full Text] [Related]  

  • 22. Analysis of matrix vesicles and their role in the calcification of epiphyseal cartilage.
    Ali SY
    Fed Proc; 1976 Feb; 35(2):135-42. PubMed ID: 1248646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells.
    Ahmed N; Williams JF; Weidemann MJ
    Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histochemical localization of calcium in the fracture callus with potassium pyroantimonate. Possible role of chondrocyte mitochondrial calcium in callus calcification.
    Brighton CT; Hunt RM
    J Bone Joint Surg Am; 1986 Jun; 68(5):703-15. PubMed ID: 2424916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fine structural localization of alkaline phosphomonoesterase in the fracture callus of the rat.
    Göthlin G; Ericsson JL
    Isr J Med Sci; 1971 Mar; 7(3):488-90. PubMed ID: 5567525
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on cartilage formation. XX. Histochemical investigation of some enzymes of glycogen metabolsim in regenerative articular surfaces.
    Hadházy C; Glant T; Mándi B; Harmati S; Bordán L; Balogh K
    Acta Morphol Acad Sci Hung; 1975; 23(3):183-93. PubMed ID: 188310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pentose-shunt oxidation in the periosteal cells in healing fractures.
    Dunham J; Shedden RG; Catterall A; Bitensky L; Chayen J
    Calcif Tissue Res; 1977 May; 23(1):77-81. PubMed ID: 19136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine structural localization of alkaline phosphatase in the fracture callus of the rat.
    Göthlin G; Ericsson JL
    Histochemie; 1973; 36(3):225-36. PubMed ID: 4757993
    [No Abstract]   [Full Text] [Related]  

  • 29. [Electron microscopic studies on the alkaline phosphatase in the enchondral calcification].
    Yamaguchi M
    Kumamoto Igakkai Zasshi; 1970 Aug; 44(8):732-58. PubMed ID: 5536339
    [No Abstract]   [Full Text] [Related]  

  • 30. [Hypertrophic callus formation and craniocerebral trauma: early diagnosis and behavior of basic fibroblast growth factor].
    Wildburger R; Zarkovic N; Petek W; Egger G; Leopold U; Schweighofer F
    Unfallchirurg; 1996 Jan; 99(1):17-23. PubMed ID: 8850075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Healing of experimental bone fractures following choledochus ligature and consecutive increase of alkaline serum phosphatase].
    Heimann D
    Monatsschr Unfallheilkd Versicher Versorg Verkehrsmed; 1974 Apr; 77(4):162-72. PubMed ID: 4277094
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of transforming growth factor beta on cells derived from bone and callus of patients with osteogenesis imperfecta.
    Mörike M; Windsheimer E; Brenner R; Nerlich A; Bushart G; Teller W; Vetter U
    J Orthop Res; 1993 Jul; 11(4):564-72. PubMed ID: 8340828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compositional variation of fibrous callus and joint cartilage in different internal environments.
    Sun XT; Hu YY; Zhao L; Lü R; Wang J; Bai JP
    Chin J Traumatol; 2006 Dec; 9(6):381-4. PubMed ID: 17096936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose 6-phosphatase and glycogen phosphorylase activities in chondrocytes in epiphyseal cartilage of growing rats.
    Tokunaga H; Watanabe J; Kanai K; Sakaida M; Kanamura S
    Anat Rec; 1987 Dec; 219(4):356-62. PubMed ID: 2834983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide regulates alkaline phosphatase activity in rat fracture callus explant cultures.
    Namkung-Matthai H; Diwan A; Mason RS; Murrell GA; Diamond T
    Redox Rep; 2000; 5(2-3):126-7. PubMed ID: 10939291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Callus luxurians in osteogenesis imperfecta].
    Bucsi L; Rényi VA
    Magy Traumatol Ortop Kezseb Plasztikai Seb; 1994; 37(4):383-6. PubMed ID: 7833998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of porous bioceramic in experimental therapy of bone injuries. III. Dynamics of the callus development at the site of porous bioceramic implantation. Morphological, histochemical and histoenzymological studies.
    Bieniek J; Kotz J; Bieniek A
    Arch Immunol Ther Exp (Warsz); 1988; 36(1):107-18. PubMed ID: 3233060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of short-term immobilization on the rabbit knee joint cartilage. A histochemical study.
    Troyer H
    Clin Orthop Relat Res; 1975; (107):249-57. PubMed ID: 48442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein.
    de Bernard B; Bianco P; Bonucci E; Costantini M; Lunazzi GC; Martinuzzi P; Modricky C; Moro L; Panfili E; Pollesello P
    J Cell Biol; 1986 Oct; 103(4):1615-23. PubMed ID: 3771650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Krebs cycle dehydrogenase activity in the dynamic consolidation of an experimental fracture].
    Vlasov BIa; Sergeeva NL
    Patol Fiziol Eksp Ter; 1986; (2):66-8. PubMed ID: 3714322
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.