These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4844632)

  • 1. A molecular orbital study of the conformation of formycin.
    Miles DW; Miles DL; Eyring H
    J Theor Biol; 1974 Jun; 45(2):577-83. PubMed ID: 4844632
    [No Abstract]   [Full Text] [Related]  

  • 2. On the conformational dependence of the proton chemical shifts in nucleosides and nucleotides. I. Proton shifts in the ribose ring of pyrimidine nucleosides as a function of the torsion angle about the glycosyl bond.
    Giessner-Prettre C; Pullman B
    J Theor Biol; 1977 Mar; 65(1):171-88. PubMed ID: 850418
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular orbital calculations on the conformation of nucleic acids and their constituents. II. Conformational energies of nucleosides with C(3')-and C(2')-exo sugars.
    Berthod H; Pullman B
    Biochim Biophys Acta; 1971 Sep; 246(3):359-64. PubMed ID: 5316821
    [No Abstract]   [Full Text] [Related]  

  • 4. Factors influencing the H6 chemical shift in pyrimidine nucleosides.
    Zemlicka J; Horwitz JP
    J Am Chem Soc; 1975 Jul; 97(14):4089-95. PubMed ID: 1159211
    [No Abstract]   [Full Text] [Related]  

  • 5. Lennard-Jones potential calculations of the barrier to rotation around the glycosidic C-N linkage in selected purine nucleosides and nucleotides. A direct comparison of the results of 6-12 potential calculations with results of semiempirical molecular orbital studies.
    Jordan F
    J Theor Biol; 1973 Sep; 41(2):375-95. PubMed ID: 4543068
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular orbital calculations of the proton-proton coupling constants in nucleosides.
    Giessner-Prettre C; Pullman B
    J Theor Biol; 1973 Aug; 40(3):441-54. PubMed ID: 4754891
    [No Abstract]   [Full Text] [Related]  

  • 7. A simple and efficient synthesis of puromycin, 2,2'-anhydro-pyrimidine nucleosides, cytidines and 2',3'-anhydroadenosine from 3',5'-O-sulfinyl xylo-nucleosides.
    Takatsuki K; Ohgushi S; Kohmoto S; Kishikawa K; Yamamoto M
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(7):719-34. PubMed ID: 16898411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular orbital calculations on the conformation of nucleic acids and their constituents. X. Conformation of beta-D-arabinosyl nucleosides.
    Saran A; Pullman B; Perahia D
    Biochim Biophys Acta; 1974 May; 349(2):189-203. PubMed ID: 4836353
    [No Abstract]   [Full Text] [Related]  

  • 9. Reaction of nucleosides with N-trimethylsilylimidazole: separation of TMS derivatives of anomeric pyrimidine nucleosides by gas-liquid chromatography.
    Kulikowski TD; Shugar D
    Acta Biochim Pol; 1974; 21(2):169-86. PubMed ID: 4369116
    [No Abstract]   [Full Text] [Related]  

  • 10. Carbon-13 magnetic resonance spectra of C-nucleosides. 3. la-c Tautomerism in formycin and formycin B and certain pyrazolo[4,3-d]pyrimidines.
    Chenon MT; Panzica RP; Smith JC; Pugmire RJ; Grant DM; Townsend LB
    J Am Chem Soc; 1976 Aug; 98(16):4736-45. PubMed ID: 950416
    [No Abstract]   [Full Text] [Related]  

  • 11. Complex formation between polyadenylic acid and formycin B.
    Davies RJ
    J Mol Biol; 1973 Feb; 73(3):317-27. PubMed ID: 4686198
    [No Abstract]   [Full Text] [Related]  

  • 12. Theoretical study of the protonation and tautomerization of adenosine, formycin, and their 2-NH2 and 2-F derivatives: functional implications in the mechanism of reaction of adenosine deaminase.
    Orozco M; Canela EI; Franco R
    Mol Pharmacol; 1989 Feb; 35(2):257-64. PubMed ID: 2537460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and structural study of pyrimidyl carbocyclic analogues of nucleosides based on cyclopentene rings.
    Terán C; Gonzalez Moa MJ; Mosquera R; Santana L
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):999-1002. PubMed ID: 11563163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal packing of pyrimidine nucleosides--a study in terms of empirical van der Waals' potential energy.
    Motherwell WD; Di Sanseverino LR; Kennard O
    J Mol Biol; 1973 Nov; 80(3):405-22. PubMed ID: 4762561
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantum chemical studies on the conformational structure of nucleic acids. 3. Calculation of backbone structure by extended Hückel theory.
    Saran A; Govil G
    J Theor Biol; 1971 Nov; 33(2):407-18. PubMed ID: 5135924
    [No Abstract]   [Full Text] [Related]  

  • 16. [Structure and conformational dynamic of three-chained coils of dA.dT:dC content with different orientation of pyrimidine nucleosides].
    Tsybenko SIu; Il'icheva IA; Florent'ev VL
    Mol Biol (Mosk); 1997; 31(6):1012-21. PubMed ID: 9480415
    [No Abstract]   [Full Text] [Related]  

  • 17. The 5,6-double bond of pyrimidine nucleosides, a fragile site in nucleic acids.
    Hayatsu H
    J Biochem; 1996 Mar; 119(3):391-5. PubMed ID: 8830029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio molecular orbital study on the thermostability of the extreme thermophile tRNA: role of the base stacking.
    Aida M; Nagata C; Ohmine I; Morokuma K
    J Theor Biol; 1982 Dec; 99(3):599-608. PubMed ID: 6188927
    [No Abstract]   [Full Text] [Related]  

  • 19. A molecular orbital study on the incorporation of nucleotides into RNA.
    Fujita H; Nagata C
    J Theor Biol; 1976 Mar; 57(1):187-202. PubMed ID: 957652
    [No Abstract]   [Full Text] [Related]  

  • 20. Accurately Modeling the Conformational Preferences of Nucleosides.
    Burai Patrascu M; Malek-Adamian E; Damha MJ; Moitessier N
    J Am Chem Soc; 2017 Oct; 139(39):13620-13623. PubMed ID: 28899099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.