These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4846293)

  • 1. Magnetic resonance studies of the formation of the ternary phosphoenolpyruvate-gadolinum-muscle pyruvate kinase complex.
    Cottam GL; Valentine KM; Thompson BC; Sherry AD
    Biochemistry; 1974 Aug; 13(17):3532-7. PubMed ID: 4846293
    [No Abstract]   [Full Text] [Related]  

  • 2. Fourier transform phosphorus magnetic resonance study of the interaction of P-enolypyruvate with the muscle pyruvate kinase-gadolinium complex.
    Cottam GL; Ward RL
    Biochem Biophys Res Commun; 1975 Jan; 64(3):797-802. PubMed ID: 1170860
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural aspects of manganese-pyruvate kinase substrate and inhibitor complexes deduced from proton magnetic relaxation rates of pyruvate and a phosphoenolpyruvate analog.
    James TL; Cohn M
    J Biol Chem; 1974 Jun; 249(11):3519-26. PubMed ID: 4831226
    [No Abstract]   [Full Text] [Related]  

  • 4. Magnetic resonance studies of the interaction of Co2+ and phosphoenolpyruvate with pyruvate kinase.
    Melamud E; Mildvan AS
    J Biol Chem; 1975 Oct; 250(20):8193-201. PubMed ID: 1236850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gadolinium asa probe of the alkaline earth and ATP-metal binding sites in pyruvate kinase.
    Valentine KM; Cottam GL
    Arch Biochem Biophys; 1973 Sep; 158(1):346-54. PubMed ID: 4354033
    [No Abstract]   [Full Text] [Related]  

  • 6. Nuclear magnetic resonance studies of selectively hindered internal motion of substrate analogs at the active site of pyruvate kinase.
    Nowak T; Mildvan AS
    Biochemistry; 1972 Jul; 11(15):2813-8. PubMed ID: 4625313
    [No Abstract]   [Full Text] [Related]  

  • 7. A multinuclear nuclear magnetic resonance study of the monovalent-divalent cation sites of pyruvate kinase.
    Raushel FM; Villafranca JJ
    Biochemistry; 1980 Nov; 19(24):5481-5. PubMed ID: 7193048
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic and magnetic resonance studies of the interaction of oxalate with pyruvate kinase.
    Reed GH; Morgan SD
    Biochemistry; 1974 Aug; 13(17):3537-41. PubMed ID: 4367426
    [No Abstract]   [Full Text] [Related]  

  • 9. A kinetic study of rabbit muscle pyruvate kinase.
    Ainsworth S; MacFarlane N
    Biochem J; 1973 Feb; 131(2):223-36. PubMed ID: 4737316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton NMR studies of the histidine residues of rabbit muscle pyruvate kinase and of its phosphoenolpyruvate complex.
    Meshitsuka S; Smith GM; Mildvan AS
    J Biol Chem; 1981 May; 256(9):4460-5. PubMed ID: 7217090
    [No Abstract]   [Full Text] [Related]  

  • 11. Magnetic resonance and catalytic studies of pyruvate kinase with essential sulfhydryl or lysyl epsilon-amino groups chemically modified.
    Flashner M; Tamir I; Mildvan AS; Meloche HP; Coon MJ
    J Biol Chem; 1973 May; 248(10):3419-25. PubMed ID: 4702870
    [No Abstract]   [Full Text] [Related]  

  • 12. Distinguishing the chemical moiety of phosphoenolpyruvate that contributes to allostery in muscle pyruvate kinase.
    Urness JM; Clapp KM; Timmons JC; Bai X; Chandrasoma N; Buszek KR; Fenton AW
    Biochemistry; 2013 Jan; 52(1):1-3. PubMed ID: 23256782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance and kinetic studies of the spatial arrangement of phosphoenolpyruvate and chromium (III)-adenosine diphosphate at the catalytic site of pyruvate kinase.
    Gupta RK; Benovic JL
    J Biol Chem; 1978 Dec; 253(24):8878-96. PubMed ID: 721820
    [No Abstract]   [Full Text] [Related]  

  • 14. Allosteric kinetics of pyruvate kinase of Saccharomyces carlsbergensis.
    Johannes KJ; Hess B
    J Mol Biol; 1973 May; 76(2):181-205. PubMed ID: 4737474
    [No Abstract]   [Full Text] [Related]  

  • 15. Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase. Detection of an active enzyme-metal-ATP-metal complex.
    Gupta RK; Fung CH; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2421-30. PubMed ID: 177415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change.
    Reuben J; Kayne FJ
    J Biol Chem; 1971 Oct; 246(20):6227-34. PubMed ID: 5127427
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of pH on the interaction of substrates and effector to yeast and rabbit muscle pyruvate kinase.
    Brown CE; Taylor JM; Chan LM
    Biochim Biophys Acta; 1985 Jul; 829(3):342-7. PubMed ID: 3890954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monomethylammonium ion as a magnetic resonance probe for monovalent cation activators. The monovalent cation in pyruvate kinase catalysis.
    Nowak T
    J Biol Chem; 1973 Oct; 248(20):7191-6. PubMed ID: 4743520
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of ions on ligand binding to pyruvate kinase: mapping the binding site with infrared spectroscopy.
    Kumar S; Barth A
    J Phys Chem B; 2011 May; 115(20):6784-9. PubMed ID: 21539324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of enzyme-bound metal-nucleotide complexes in the phosphoryl transfer reaction of muscle pyruvate kinase. 31P NMR studies with magnesium and kinetic studies with chromium nucleotides.
    Gupta RK; Mildvan AS
    J Biol Chem; 1977 Sep; 252(17):5967-76. PubMed ID: 408345
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.