These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4846735)

  • 1. The effect of the phenolic antibacterial agent fentichlor on energy coupling in Staphylococcus aureus.
    Bloomfield SF
    J Appl Bacteriol; 1974 Mar; 37(1):117-31. PubMed ID: 4846735
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureus and Escherichia coli. 3. The effect of fentichlor on the metabolic activities of Staphylococcus aureus and Escherichia coli.
    Hugo WB; Bloomfield SF
    J Appl Bacteriol; 1971 Sep; 34(3):579-91. PubMed ID: 4945521
    [No Abstract]   [Full Text] [Related]  

  • 3. The mechanism of energy coupling in the active transport of amino acids by Staphylococcus aureus.
    Niven DF; Hamilton WA
    Biochem J; 1972 Apr; 127(3):58P. PubMed ID: 5076203
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of cell lipid depletion in Staphylococcus aureus upon its resistance to antimicrobial agents. 2. A ccomparison of the response of normal and lipid depleted cells of S. aureus to antibacterial drugs.
    Hugo WB; Davidson JR
    Microbios; 1973; 8(29):63-72. PubMed ID: 4765900
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of energy coupling to the transport of amino acids by Staphylococcus aureus.
    Niven DF; Hamilton WA
    Eur J Biochem; 1974 May; 44(2):517-22. PubMed ID: 4838680
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureus and Escherichia coli. I. The adsorption of fentichlor by the bacterial cell and its antibacterial activity.
    Hugo WB; Bloomfield SF
    J Appl Bacteriol; 1971 Sep; 34(3):557-67. PubMed ID: 4945519
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the mode of action of the phenolic antibacterial agent fentichlor against Staphylococcus aureus and Escherichia coli. II. The effects of fentichlor on the bacterial membrane and the cytoplasmic constituents of the cell.
    Hugo WB; Bloomfield SF
    J Appl Bacteriol; 1971 Sep; 34(3):569-78. PubMed ID: 4945520
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of Staphylococcus aureus by combinations of non-ionic surface active agents and antibacterial substances.
    Allwood MC
    Microbios; 1973; 7(28):209-14. PubMed ID: 4750937
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of antibiotics on ion transport and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Thore A; Keister DL; Shavit N; San Pietro A
    Biochemistry; 1968 Oct; 7(10):3499-507. PubMed ID: 5681459
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of valinomycin on ion transport in bacterial cells and on bacterial growth.
    Ryabova ID; Gorneva GA; Ovchinnikov YA
    Biochim Biophys Acta; 1975 Aug; 401(1):109-18. PubMed ID: 807259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2-hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrus deodara, against Staphylococcus aureus.
    Wu Y; Bai J; Zhong K; Huang Y; Qi H; Jiang Y; Gao H
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27548123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hydrogen and potassium ions in the transport of acidic amino acids in Staphylococcus aureus.
    Gale EF; Llewellin JM
    Biochim Biophys Acta; 1972 Apr; 266(1):182-205. PubMed ID: 4625217
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of amino acids on lipid synthesis in Staphylococcus aureus.
    Gale EF; Folkes JP
    Biochim Biophys Acta; 1967 Oct; 144(2):452-60. PubMed ID: 6064618
    [No Abstract]   [Full Text] [Related]  

  • 14. Interference with cellular incorporation of substrates into Staphylococcus aureus by hormones.
    Fitzgerald T; Yotis WW
    J Med Microbiol; 1971 Feb; 4(1):97-106. PubMed ID: 5548603
    [No Abstract]   [Full Text] [Related]  

  • 15. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus.
    Hatano T; Uebayashi H; Ito H; Shiota S; Tsuchiya T; Yoshida T
    Chem Pharm Bull (Tokyo); 1999 Aug; 47(8):1121-7. PubMed ID: 10478467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the active transport of chlorotetracycline in staphylococcus aureus by a fluorescence technique.
    Dockter ME; Magnuson JA
    J Supramol Struct; 1974; 2(1):32-44. PubMed ID: 4211866
    [No Abstract]   [Full Text] [Related]  

  • 17. The mechanism of the bacteriostatic action of tetrachlorosalicylanilide: a Membrane-active antibacterial compound.
    Hamilton WA
    J Gen Microbiol; 1968 Mar; 50(3):441-58. PubMed ID: 4870833
    [No Abstract]   [Full Text] [Related]  

  • 18. Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant.
    Egan JB; Morse ML
    Biochim Biophys Acta; 1965 Sep; 109(1):172-83. PubMed ID: 5864011
    [No Abstract]   [Full Text] [Related]  

  • 19. Efficacy of the antiseptic solution 'TCP' against Staphylococcus aureus and Pseudomonas aeruginosa.
    Acheampong YB; el-Mahmood A; Olurinola PF
    J Hosp Infect; 1988 Oct; 12(3):235-6. PubMed ID: 2904465
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenolic Compounds and In Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop.
    Fu L; Lu W; Zhou X
    Biomed Res Int; 2016; 2016():4287461. PubMed ID: 27648444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.