BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4846745)

  • 1. The intramolecular conformation of adenosine 5'-monophosphate in aqueous solution as studied by fast Fourier transform 1H and 1H-(31P) nuclear magnetic resonance spectroscopy.
    Evans FE; Sarma RH
    J Biol Chem; 1974 Aug; 249(15):4754-9. PubMed ID: 4846745
    [No Abstract]   [Full Text] [Related]  

  • 2. Interrelation between glycosidic torsion, sugar pucker, and backbone conformation in 5'-beta-nucleotides. A 1H and 31P fast Fourier transform nuclear magnetic resonance investigation of the conformation of 8-aza-5'-beta-adenosine monophosphate and 8-aza-5'-beta-guanosine monophosphate.
    Lee CH; Evans FE; Sarma RH
    J Biol Chem; 1975 Feb; 250(4):1290-6. PubMed ID: 1112806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H, 1H-(31P), 31P, and 31P-(1H) fast Fourier transform NMR study of the solution conformation of the cofactors involved in glycogen synthesis: adenosinediphosphoglucose and uridinediphosphoglucose.
    Sarma RH; Lee CH; Hruska FE; Wood DJ
    FEBS Lett; 1973 Oct; 36(2):157-62. PubMed ID: 4754262
    [No Abstract]   [Full Text] [Related]  

  • 4. High-resolution proton and phosphorus nuclear magnetic resonance spectra of flavin-adenine dinucleotide and its conformation in aqueous solution.
    Kainosho M; Kyogoku Y
    Biochemistry; 1972 Feb; 11(5):741-52. PubMed ID: 5059885
    [No Abstract]   [Full Text] [Related]  

  • 5. Nuclear-magnetic-resonance with 13C and 31P and circular-dichroism studies of a ternary complex of spermine, Cu2+ and AMP.
    Weser U; Strobel GJ; Rupp H; Voelter W
    Eur J Biochem; 1974 Dec; 50(1):91-9. PubMed ID: 4548872
    [No Abstract]   [Full Text] [Related]  

  • 6. Intermolecular orientations of adenosine-5-monophosphate in aqueous solution as studied by fast fourier ytsndgotm 1H Nmr spectroscopy.
    Evans FE; Sarma RH
    Biopolymers; 1974; 13(10):2117-32. PubMed ID: 4433704
    [No Abstract]   [Full Text] [Related]  

  • 7. Quantitative determination of conformations of flexible molecules in solution using lanthanide ions as nuclear magnetic resonance probes: application to adenosine-5'-monophosphate.
    Barry CD; Glasel JA; Williams RJ; Xavier AV
    J Mol Biol; 1974 Apr; 84(4):471-09. PubMed ID: 4840868
    [No Abstract]   [Full Text] [Related]  

  • 8. 13 C-nuclear magnetic resonance and x-ray photoelectron spectroscopy of Cu-AMP.
    Weser U; Strobel GJ; Voelter W
    FEBS Lett; 1974 May; 41(2):243-7. PubMed ID: 4855441
    [No Abstract]   [Full Text] [Related]  

  • 9. Conformation of pyridine nucleotides studied by phosphorus-31 and hydrogen-1 fast fourier transform nuclear magnetic resonance spectroscopy. III. Oxidized and reduced dinucleotides.
    Sarma RH; Mynott RJ
    J Am Chem Soc; 1973 Oct; 95(22):7470-80. PubMed ID: 4147828
    [No Abstract]   [Full Text] [Related]  

  • 10. Nucleotide torsional flexibility in solution and the use of the lanthanides as nuclear-magnetic-resonance conformation probes. The case of adenosine 5'-monophosphate.
    Geraldes CF; Williams RJ
    Eur J Biochem; 1978 Apr; 85(2):463-70. PubMed ID: 648530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide antibiotic-nucleotide interactions. Nuclear magnetic resonance investigations of complex formation between actinomycin d and deoxyguanosine 5'-monophosphate in aqueous solution.
    Patel DJ
    Biochemistry; 1974 Mar; 13(7):1476-82. PubMed ID: 4819760
    [No Abstract]   [Full Text] [Related]  

  • 12. A conformational study of adenylyl-(3',5')-adenosine and adenylyl-(2',5')-adenosine in aqueous solution by carbon-13 magnetic resonance spectroscopy.
    Schleich T; Cross BP; Smith IC
    Nucleic Acids Res; 1976 Feb; 3(2):355-70. PubMed ID: 1257051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptamine-adenosine 5'-monophosphate interactions as studied by nuclear magnetic resonance and relaxation.
    Perly B; Langlet G; Chachaty C
    Biochim Biophys Acta; 1980 Mar; 628(2):161-73. PubMed ID: 7357034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the interaction of manganese ions with ATP by 31P Fourier-transform nuclear-magnetic resonance.
    Brown FF; Campbell ID; Henson R; Hirst CW; Richards RE
    Eur J Biochem; 1973 Sep; 38(1):54-8. PubMed ID: 4774125
    [No Abstract]   [Full Text] [Related]  

  • 15. Conformational studies of some 2':3'-cyclic mononucleotides in solution by different nuclear-magnetic-resonance methods.
    Geraldes CF; Williams RJ
    Eur J Biochem; 1978 Apr; 85(2):471-8. PubMed ID: 648531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Fourier transform techniques on high resolution NMR spectroscopy.
    Glasel JA
    Fed Proc; 1974 Aug; 33(8):1973-7. PubMed ID: 4843554
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantitative determination of the conformation of cyclic 3',5'-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes.
    Barry CD; Martin DR; Williams RJ; Xavier AV
    J Mol Biol; 1974 Apr; 84(4):491-502. PubMed ID: 4366435
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies of carbohydrates by Fourier transform NMR spectroscopy: structural analysis of glycosyl cyanides.
    Coxon B
    Ann N Y Acad Sci; 1973 Dec; 222():952-70. PubMed ID: 4522451
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes.
    Tanswell P; Thornton JM; Korda AV; Williams RJ
    Eur J Biochem; 1975 Sep; 57(1):135-45. PubMed ID: 240716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance studies of biological and model membrane systems.
    Chapman D; Oldfield E
    Methods Enzymol; 1974; 32():198-211. PubMed ID: 4444523
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.