These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4847553)

  • 1. Relations between fluorescence and thylakoid structure in Porphyridium cruentum.
    Clement-Metral JC; Lefort-Tran M
    Biochim Biophys Acta; 1974 Mar; 333(3):560-9. PubMed ID: 4847553
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic behavior of cytochrome f in cyclic and noncyclic electron transport in Porphyridium cruentum.
    Biggins J
    Biochemistry; 1973 Mar; 12(6):1165-70. PubMed ID: 4688863
    [No Abstract]   [Full Text] [Related]  

  • 3. Relation of membrane structural changes to energy spillover in oat and spinach chloroplasts: use of fluorescence probes and light scattering.
    Vandermeulen DL; Govindjee
    Biochim Biophys Acta; 1974 Oct; 368(1):61-70. PubMed ID: 4424695
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of plastoquinone in the in vivo photosynthetic cyclic electron transport pathway in algae.
    Biggins J
    FEBS Lett; 1974 Jan; 38(3):311-4. PubMed ID: 4855064
    [No Abstract]   [Full Text] [Related]  

  • 5. Reactions of b-cytochromes in the red alga Porphyridium aerugineum.
    Amesz J; Pulles MP; Visser JW; Sibbing A
    Biochim Biophys Acta; 1972 Sep; 275(3):442-52. PubMed ID: 5070061
    [No Abstract]   [Full Text] [Related]  

  • 6. Action of hydroxylamine in the red alga Porphyridium cruentum.
    Mohanty P; Mar T; Govindjee
    Biochim Biophys Acta; 1971 Nov; 253(1):213-21. PubMed ID: 5126505
    [No Abstract]   [Full Text] [Related]  

  • 7. Energy distribution in the photochemical apparatus of Porphyridium cruentum in state I and state II.
    Ley AC; Butler WL
    Biochim Biophys Acta; 1980 Sep; 592(2):349-63. PubMed ID: 7407096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride transport and photosynthesis in cells of Griffithsia.
    Lilley RM; Hope AB
    Biochim Biophys Acta; 1971 Jan; 226(1):161-71. PubMed ID: 5549980
    [No Abstract]   [Full Text] [Related]  

  • 9. Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus.
    Schreiber U; Vidaver W
    Biochim Biophys Acta; 1974 Oct; 368(1):97-112. PubMed ID: 4423963
    [No Abstract]   [Full Text] [Related]  

  • 10. Reconstitution of grana thylakoids in spinach chloroplasts.
    Akoyunoglou G; Argyroudi-Akoyunoglou J
    FEBS Lett; 1974 Jun; 42(2):135-40. PubMed ID: 4854049
    [No Abstract]   [Full Text] [Related]  

  • 11. On the origins of 718 nm fluorescence from Porphyridium cruentum at 77 K.
    Wang RT; Graham JR; Myers J
    Biochim Biophys Acta; 1980 Sep; 592(2):277-84. PubMed ID: 7407092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quantum yield of photosynthesis in Porphyridium cruentum, and the role of chlorophyll a in the photosynthesis of red algae.
    BRODY M; EMERSON R
    J Gen Physiol; 1959 Nov; 43(2):251-64. PubMed ID: 13804675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function of plastoquinone in photosynthetic electron transport.
    Amesz J
    Biochim Biophys Acta; 1973 Feb; 301(1):35-51. PubMed ID: 4574766
    [No Abstract]   [Full Text] [Related]  

  • 14. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.
    Brody SS; Treadwell C; Barber J
    Biophys J; 1981 Jun; 34(3):439-49. PubMed ID: 6788106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin.
    Arnon DI; McSwain BD; Tsujimoto HY; Wada K
    Biochim Biophys Acta; 1974 Aug; 357(2):231-45. PubMed ID: 4153919
    [No Abstract]   [Full Text] [Related]  

  • 16. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns.
    Liu LN; Aartsma TJ; Thomas JC; Lamers GE; Zhou BC; Zhang YZ
    J Biol Chem; 2008 Dec; 283(50):34946-53. PubMed ID: 18930925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary reactions, plastoquinone and fluorescence yield in subchloroplast fragments prepared with deoxycholate.
    van Gorkom HJ; Tamminga JJ; Haveman J
    Biochim Biophys Acta; 1974 Jun; 347(3):417-38. PubMed ID: 4842006
    [No Abstract]   [Full Text] [Related]  

  • 18. Lifetime of the excited state in vivo. I. Chlorophyll a in algae, at room and at liquid nitrogen temperatures; rate constants of radiationless deactivation and trapping.
    Mar T; Govindjee ; Singhal GS; Merkelo H
    Biophys J; 1972 Jul; 12(7):797-808. PubMed ID: 4624832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of magnesium on the chlorophyll fluorescence yield of isolated chloroplasts.
    Jennings RC; Forti G
    Biochim Biophys Acta; 1974 May; 347(2):299-310. PubMed ID: 4210081
    [No Abstract]   [Full Text] [Related]  

  • 20. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga.
    Porter G; Tredwell CJ; Searle GF; Barber J
    Biochim Biophys Acta; 1978 Feb; 501(2):232-45. PubMed ID: 620014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.