These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 4847802)

  • 1. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen.
    Davis DC; Potter WZ; Jollow DJ; Mitchell JR
    Life Sci; 1974 Jun; 14(11):2099-109. PubMed ID: 4847802
    [No Abstract]   [Full Text] [Related]  

  • 2. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters.
    Potter WZ; Thorgeirsson SS; Jollow DJ; Mitchell JR
    Pharmacology; 1974; 12(3):129-43. PubMed ID: 4445191
    [No Abstract]   [Full Text] [Related]  

  • 3. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo.
    Jollow DJ; Mitchell JR; Potter WZ; Davis DC; Gillette JR; Brodie BB
    J Pharmacol Exp Ther; 1973 Oct; 187(1):195-202. PubMed ID: 4746327
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of L-ascorbic acid on acetaminophen-induced hepatotoxicity and covalent binding in hamsters. Evidence that in vitro covalent binding differs from that in vivo.
    Miller MG; Jollow DJ
    Drug Metab Dispos; 1984; 12(3):271-9. PubMed ID: 6145552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug metabolism as a cause of drug toxicity.
    Mitchell JR; Jollow DJ; Gillette JR; Brodie BB
    Drug Metab Dispos; 1973; 1(1):418-23. PubMed ID: 4149413
    [No Abstract]   [Full Text] [Related]  

  • 6. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen.
    Jollow DJ; Thorgeirsson SS; Potter WZ; Hashimoto M; Mitchell JR
    Pharmacology; 1974; 12(4-5):251-71. PubMed ID: 4449889
    [No Abstract]   [Full Text] [Related]  

  • 7. Cimetidine protects against acetaminophen hepatotoxicity in rats.
    Mitchell MC; Schenker S; Avant GR; Speeg KV
    Gastroenterology; 1981 Dec; 81(6):1052-60. PubMed ID: 7286583
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemical mechanism of hepatic necrosis induced by aromatic hydrocarbons.
    Reid WD; Krishna G; Gillette R; Brodie BB
    Pharmacology; 1973; 10(4):193-214. PubMed ID: 4762215
    [No Abstract]   [Full Text] [Related]  

  • 9. [Reaction of the hepatic tissue of various laboratory animals to single administration of thioacetamide].
    Förster M
    Beitr Pathol Anat; 1969; 139(4):421-38. PubMed ID: 5364615
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of ribose cysteine pretreatment on hepatic and renal acetaminophen metabolite formation and glutathione depletion.
    Slitt AM; Dominick PK; Roberts JC; Cohen SD
    Basic Clin Pharmacol Toxicol; 2005 Jun; 96(6):487-94. PubMed ID: 15910414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An epoxysuccinic acid derivative(loxistatin)-induced hepatic injury in rats and hamsters.
    Fukushima K; Arai M; Kohno Y; Suwa T; Satoh T
    Toxicol Appl Pharmacol; 1990 Aug; 105(1):1-12. PubMed ID: 2392799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione depletion by aniline analogs in vitro associated with liver microsomal cytochrome P-450.
    Aikawa K; Satoh T; Kobayashi K; Kitagawa H
    Jpn J Pharmacol; 1978 Oct; 28(5):699-705. PubMed ID: 722999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sodium selenite on morphine-induced hepatotoxicity in mice.
    Nagamatsu K; Hasegawa A
    Drug Chem Toxicol; 1993; 16(3):241-53. PubMed ID: 8404545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrolobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic hydrocarbons.
    Reid WD; Krishna G
    Exp Mol Pathol; 1973 Feb; 18(1):80-99. PubMed ID: 4693627
    [No Abstract]   [Full Text] [Related]  

  • 15. Paracetamol-induced hepatic necrosis in the mouse-relationship between covalent binding, hepatic glutathione depletion and the protective effect of alpha-mercaptopropionylglycine.
    Labadarios D; Davis M; Portmann B; Williams R
    Biochem Pharmacol; 1977 Jan; 26(1):31-5. PubMed ID: 831725
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of biotransformation in chemical-induced liver injury.
    Mitchell JR; Snodgrass WR; Gillette JR
    Environ Health Perspect; 1976 Jun; 15():27-38. PubMed ID: 1033831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental acetaminophen-induced hepatic necrosis: biochemical and electron microscopic study of cysteamine protection.
    Chiu S; Bhakthan NM
    Lab Invest; 1978 Sep; 39(3):193-203. PubMed ID: 101718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetaminophen structure-toxicity studies: in vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide.
    Roberts SA; Price VF; Jollow DJ
    Toxicol Appl Pharmacol; 1990 Sep; 105(2):195-208. PubMed ID: 2219115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous susceptibility of the fasted hamster to acetaminophen hepatotoxicity.
    Miller MG; Price VF; Jollow DJ
    Biochem Pharmacol; 1986 Mar; 35(5):817-25. PubMed ID: 3754139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine preserves liver glutathione after lethal hepatic injury.
    Hong RW; Rounds JD; Helton WS; Robinson MK; Wilmore DW
    Ann Surg; 1992 Feb; 215(2):114-9. PubMed ID: 1546897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.