These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 4849429)

  • 1. [Possibilities of relative and absolute estimation on the degree of reduction of the perfusion caused by stenoses of a terminal artery of the type of the renal artery. Theoretical postulates].
    Beránek I
    Cas Lek Cesk; 1974 Jul; 113(28):858-62. PubMed ID: 4849429
    [No Abstract]   [Full Text] [Related]  

  • 2. [Possiblities of relative and absolute estimation on the degree of reduction of the perfusion caused by stenoses of the terminal artery of the type of the renal artery. Experimental study].
    Beránek I
    Cas Lek Cesk; 1974 Jul; 113(29):891-6. PubMed ID: 4846253
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effective perfusion area of renal artery stenosis in experiment].
    Beránek I; Rosenbusch G
    Z Exp Chir; 1972; 5(1):28-39. PubMed ID: 4680966
    [No Abstract]   [Full Text] [Related]  

  • 4. Renal hemodynamics and function in response to renal artery occlusion in canine and primate kidneys.
    Hinshaw LB; Archer LL; Parry WL; Shires TK
    Invest Urol; 1970 Mar; 7(5):422-32. PubMed ID: 4985580
    [No Abstract]   [Full Text] [Related]  

  • 5. Calculation of blood velocity and pressure in stenosed renal artery considered as a Venturi tube.
    Collard M; Guey A
    Biomedicine; 1979 Jun; 30(2):108-12. PubMed ID: 476264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hemodynamics during catheter-measurement of pressure difference in experiment].
    Beránek I
    Z Exp Chir; 1971; 4(1):37-45. PubMed ID: 5162939
    [No Abstract]   [Full Text] [Related]  

  • 7. [Blood flow in a renal artery with a deformed vessel wall].
    Kozhevnikov AA; Arabidze GG; Matveeva LS
    Biofizika; 1977; 22(2):318-22. PubMed ID: 861271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hemodynamic consequences of venous hypertension on the normal and autotransplanted kidney].
    Thibault P; Guédon J; Dubois M; Beaufils H; Kuss R
    Pathol Biol (Paris); 1973 May; 21(5):515-21. PubMed ID: 4579851
    [No Abstract]   [Full Text] [Related]  

  • 9. [Determination of intrarenal hemodynamics in patients with renal artery stenosis].
    Brech WJ; Nobbe F; Rudofsky G; Franz HE
    Verh Dtsch Ges Inn Med; 1973; 79():793-6. PubMed ID: 4789995
    [No Abstract]   [Full Text] [Related]  

  • 10. [Comparable assessment of the degree of narrowing of terminal artery of renal artery type. Theoretical and experimental study (author's transl)].
    Beránek I
    Cas Lek Cesk; 1974 Jul; 113(30):905-9. PubMed ID: 4605573
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on the regional renal blood flow with p32-labelled red cells and small beta-sensitive semiconductor detectors.
    Wolgast M
    Acta Physiol Scand Suppl; 1968; 313():1-109. PubMed ID: 4884473
    [No Abstract]   [Full Text] [Related]  

  • 12. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure.
    Wauters J; Claus P; Brosens N; McLaughlin M; Malbrain M; Wilmer A
    J Trauma; 2009 Mar; 66(3):713-9. PubMed ID: 19276743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.
    Kagadis GC; Skouras ED; Bourantas GC; Paraskeva CA; Katsanos K; Karnabatidis D; Nikiforidis GC
    Med Eng Phys; 2008 Jun; 30(5):647-60. PubMed ID: 17714975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of sodium by the renal lymphatics during elevated central venous pressures.
    Cockett AT; Katz YJ; Moore RS
    Invest Urol; 1968 Mar; 5(5):483-91. PubMed ID: 5651067
    [No Abstract]   [Full Text] [Related]  

  • 15. Renal circulation in patients with renal artery stenosis.
    Ladefoged J; Pedersen F
    Scand J Clin Lab Invest Suppl; 1967; 100():37. PubMed ID: 6038136
    [No Abstract]   [Full Text] [Related]  

  • 16. [Rheonephrography as a method of evaluation of renal hemodynamics].
    Sidorenko GI; Polonetskiĭ LZ; Krylov VP
    Ter Arkh; 1974; 46(7):113-8. PubMed ID: 4410790
    [No Abstract]   [Full Text] [Related]  

  • 17. [Initial results of an experimental hemodynamic study on a model of renal type blood circulation. Towards a hemodynamic theory of autoregulation of renal circulation].
    Coquelet G; Bidet JM; Glanddier G; Levadoux H
    C R Seances Soc Biol Fil; 1973; 167(10):1387-93. PubMed ID: 4793561
    [No Abstract]   [Full Text] [Related]  

  • 18. Renal artery stenosis: extracting quantitative parameters with a mathematical model fitted to magnetic resonance blood flow data.
    Larsson M; Persson A; Eriksson P; Kihlberg J; Smedby O
    J Magn Reson Imaging; 2008 Jan; 27(1):140-7. PubMed ID: 18050354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of organ hemodynamics during controlled perfusion].
    Nefedov VP; Iarygina IV; Dorrer GA; Gareev RA; Kim TD
    Izv Akad Nauk SSSR Biol; 1983; (3):440-50. PubMed ID: 6875088
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of intermittent versus continuous renal arterial occlusion on hemodynamics and function of the kidney.
    Wilson DH; Barton BB; Parry WL; Hinshaw LB
    Invest Urol; 1971 Mar; 8(5):507-15. PubMed ID: 5556481
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.