BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4850185)

  • 1. A comparison on the coordination tendency towards Cu2+ of the base moieties in guanosine, inosine and adenosine 5'-triphosphates.
    Sigel H; Naumann CF; Prijs B
    Eur J Biochem; 1974 Aug; 46(3):589-93. PubMed ID: 4850185
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenosine and inosine 5'-triphosphates. Protonation, metal-ion coordination, and charge-transfer interaction between two ligands within ternary complexes.
    Naumann CF; Prijs B; Sigel H
    Eur J Biochem; 1974 Jan; 41(2):209-16. PubMed ID: 4816894
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of the self-association properties of the 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Further evidence for ionic interactions in the highly stable dimeric [H2(ATP)]2(4-) stack.
    Corfù NA; Tribolet R; Sigel H
    Eur J Biochem; 1990 Aug; 191(3):721-35. PubMed ID: 2167851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the metal-ion-promoted dephosphorylation of the 5'-triphosphates of adenosine, inosine, guanosine and cytidine by Mn2+, Ni2+ and Zn2+ in binary and ternary complexes.
    Amsler PE; Sigel H
    Eur J Biochem; 1976 Apr; 63(2):569-81. PubMed ID: 4327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-base properties of nucleosides and nucleotides as a function of concentration. Comparison of the proton affinity of the nucleic base residues in the monomeric and self-associated, oligomeric 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP).
    Corfù NA; Sigel H
    Eur J Biochem; 1991 Aug; 199(3):659-69. PubMed ID: 1868851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ternary complexes in solution. 26. Stacking interactions in the mixed-ligand complexes formed by adenosine or inosine 5'-triphosphate, 2,2'-bipyridyl, and cobalt(II), nickel(II), copper(II), or zinc(II). Evidence for phosphate-protonated complexes.
    Chaudhuri P; Sigel H
    J Am Chem Soc; 1977 Apr; 99(9):3142-50. PubMed ID: 850047
    [No Abstract]   [Full Text] [Related]  

  • 7. Nucleic base-metal ion interactions. Acidity of the N(1) or N(3) proton in binary and ternary complexes of Mn-2+, Ni-2+, and Zn-2+ with the 5'-triphosphates of inosine, guanosine, uridine, and thymidine.
    Sigel H
    J Am Chem Soc; 1975 May; 97(11):3209-14. PubMed ID: 237046
    [No Abstract]   [Full Text] [Related]  

  • 8. [Complex formation of nucleic acid bases with Cu2+. Acidity of the N-1 protons in inosine-, guanosine-, uridine- and thymidine-5'-triphosphate as well as in the Cu2+-complexes].
    Sigel H
    Eur J Biochem; 1968 Feb; 3(4):530-7. PubMed ID: 5642461
    [No Abstract]   [Full Text] [Related]  

  • 9. Hydrolysis of nucleoside phosphates: IV. The metal ion-nucleic base interaction in the Cu2+-promoted dephosphorylation of the 5'-di- and 5'-triphosphates of cytidine, inosine and guanosine, and their protection toward hydrolysis by coordination to Cu(2,2'-bipyridyl)2+.
    Sigel H; Buisson DH; Prijs B
    Bioinorg Chem; 1975; 5(1):1-20. PubMed ID: 241426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cupric ion-adenosine triphosphate system. Proton magnetic resonance line-broadening studies.
    Feldman I; Wee V
    Biochemistry; 1974 Apr; 13(9):1836-40. PubMed ID: 4840829
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of metal ions with polynucleotides and related compounds. 18. The multiplicity of reactions of copper(II) with inosine and its derivatives.
    Berger NA; Eichhorn GL
    J Am Chem Soc; 1971 Dec; 93(25):7062-9. PubMed ID: 5133097
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy.
    Son TD; Roux M; Ellenberger M
    Nucleic Acids Res; 1975 Jul; 2(7):1101-10. PubMed ID: 239391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for nucleotide regulation of aspartate transcarbamylase.
    London RE; Schmidt PG
    Biochemistry; 1972 Aug; 11(16):3136-42. PubMed ID: 4557519
    [No Abstract]   [Full Text] [Related]  

  • 14. On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (epsilon-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of epsilon-AMP, AMP, ADP and ATP.
    Sigel H; Scheller KH
    Eur J Biochem; 1984 Jan; 138(2):291-9. PubMed ID: 6321171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the allosteric modification of nucleoside diphosphatase activity by magnesium nucleoside triphosphates and inosine diphosphate.
    Schramm VL; Morrison JF
    Biochemistry; 1971 Jun; 10(12):2272-7. PubMed ID: 4329873
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of guanosine triphosphate in ferric ion-linked Fenton chemistry.
    Biaglow JE; Held KD; Manevich Y; Tuttle S; Kachur A; Uckun F
    Radiat Res; 1996 May; 145(5):554-62. PubMed ID: 8619020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of ATPase from the cytoplasmic membrane of Bacillus megaterium KM.
    Mirsky R; Barlow V
    Biochim Biophys Acta; 1971 Sep; 241(3):835-45. PubMed ID: 4258592
    [No Abstract]   [Full Text] [Related]  

  • 18. Surface potential changes on energization of the mitochondrial inner membrane.
    Quintanilha AT; Packer L
    FEBS Lett; 1977 Jun; 78(2):161-5. PubMed ID: 18368
    [No Abstract]   [Full Text] [Related]  

  • 19. Binding of purine nucleotides to ammonium formate during gel filtration on Sephadex G-10.
    Bernofsky C
    Anal Biochem; 1975 Sep; 68(1):311-5. PubMed ID: 1190444
    [No Abstract]   [Full Text] [Related]  

  • 20. Interactions of nucleoside di- and triphosphates with rabbit platelets.
    Packham MA; Guccione MA; Perry DW; Mustard JF
    Am J Physiol; 1974 Nov; 227(5):1143-8. PubMed ID: 4440755
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.