These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 4851184)

  • 1. Cooperative monomer binding by polynucleotides. Effect of multiple-loop configurations on formation of triple-stranded complexes.
    Schmitz KS
    Biopolymers; 1974 May; 13(5):1039-53. PubMed ID: 4851184
    [No Abstract]   [Full Text] [Related]  

  • 2. Cooperative nonenzymic base recognition. Kinetics of the binding of a base monomer to a complementary polynucleotide template.
    Hoffmann GW; Pörschke D
    Biopolymers; 1973; 12(7):1625-38. PubMed ID: 4741162
    [No Abstract]   [Full Text] [Related]  

  • 3. Cooperative disordering of single-stranded polynucleotides through copper crosslinking.
    Rifkind JM; Shin YA; Heim JM; Eichhorn GL
    Biopolymers; 1976 Oct; 15(10):1879-1902. PubMed ID: 963235
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetics of cooperative conformational transitions of lineal biopolymers.
    Schwarz G; Engel J
    Angew Chem Int Ed Engl; 1972 Jul; 11(7):568-75. PubMed ID: 4627681
    [No Abstract]   [Full Text] [Related]  

  • 5. Binding studies of a triple-helical peptide model of macrophage scavenger receptor to tetraplex nucleic acids.
    Mielewczyk SS; Breslauer KJ; Anachi RB; Brodsky B
    Biochemistry; 1996 Sep; 35(35):11396-402. PubMed ID: 8784195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Letter: Polynucleotide models. A correlation between helical parameters and the radial position of the backbone.
    Zimmerman SB
    Biopolymers; 1976 May; 15(5):1015-8. PubMed ID: 1260104
    [No Abstract]   [Full Text] [Related]  

  • 7. Cooperative nonenzymic base recognition. Thermodynamics of the helix--coil transition of a monomer--polymer double helix.
    Hoffmann GW; Pörschke D
    Biopolymers; 1973; 12(7):1611-23. PubMed ID: 4741161
    [No Abstract]   [Full Text] [Related]  

  • 8. Polynucleotide models. II. Prediction of the radial position and tilt of the bases from the helical parameters.
    Zimmerman SB
    Biopolymers; 1977 Apr; 16(4):749-63. PubMed ID: 851579
    [No Abstract]   [Full Text] [Related]  

  • 9. Interactions of the bacteriophage T4 gene 59 protein with single-stranded polynucleotides: binding parameters and ion effects.
    Lefebvre SD; Morrical SW
    J Mol Biol; 1997 Sep; 272(3):312-26. PubMed ID: 9325092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative binding of adenosine by polyuridylic acid: a further analysis.
    Schmitz KS; Schurr JM
    Biopolymers; 1970; 9(6):697-715. PubMed ID: 5444130
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification of single-stranded M13 DNA by cooperative triple-helix-mediated affinity capture.
    Johnson AF; Wang R; Ji H; Chen D; Guilfoyle RA; Smith LM
    Anal Biochem; 1996 Feb; 234(1):83-95. PubMed ID: 8742086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular orbital calculations on the conformation of nucleic acids and their constituents. 3. Backbone structure of di- and polynucleotides.
    Pullman B; Perahia D; Saran A
    Biochim Biophys Acta; 1972 Apr; 269(1):1-14. PubMed ID: 5026319
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of non-complementary nucleotides on the rate of helix formation: kinetics of formation of poly (I)-poly (C,I) and poly (I)-poly (C,U) complexes.
    Kallenbach NR; Drost SD
    Biopolymers; 1972; 11(8):1613-20. PubMed ID: 5056085
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of polynucleotide & nucleic acid chains.
    Srinivasan AR; Srinivasan R
    Indian J Biochem Biophys; 1977 Mar; 14(1):94-6. PubMed ID: 924496
    [No Abstract]   [Full Text] [Related]  

  • 15. Control of complexity constraints on combinatorial screening for preferred oligonucleotide hybridization sites on structured RNA.
    Bruice TW; Lima WF
    Biochemistry; 1997 Apr; 36(16):5004-19. PubMed ID: 9125523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of selectively reacting ligands on the helix-coil transition of DNA. III. Calculation of the melting curves of DNA-ligand complexes].
    Akhrem AA; Lando DIu
    Mol Biol (Mosk); 1981; 15(5):1083-92. PubMed ID: 7300827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular orbital study of stability and the conformation of double-stranded DNA-like polymers.
    Fujita H; Imamura A; Nagata C
    J Theor Biol; 1974 Jun; 45(2):411-33. PubMed ID: 4844625
    [No Abstract]   [Full Text] [Related]  

  • 18. On the origin of the hypochromic effect in double-stranded polynucleotides.
    Danilov VI
    FEBS Lett; 1974 Oct; 47(1):155-7. PubMed ID: 4426389
    [No Abstract]   [Full Text] [Related]  

  • 19. [Study of the mechanism of the unwinding effect of destabilized helix of bacteriophage f1 gene 5 protein with the aid of model tripeptides].
    Tiaglov BV; Minaev VE; Trubnikov AV; Permogorov VI
    Mol Biol (Mosk); 1981; 15(2):454-60. PubMed ID: 6972482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular field theory of hysteresis in helix-coil transitions of polynucleotides.
    Weisbuch G; Neumann E
    Biopolymers; 1973; 12(7):1479-91. PubMed ID: 4741154
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.