These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 485134)
21. [Characterization of insecticidal crystal proteins of Bacillus thuringiensis subsp. chinensis CT-43]. Sun M; Yu Z Wei Sheng Wu Xue Bao; 1996 Aug; 36(4):303-6. PubMed ID: 9639832 [TBL] [Abstract][Full Text] [Related]
22. Dietary effects of four phytoecdysteroids on growth and development of the Indian meal moth, Plodia interpunctella. Rharrabe K; Sayan F; Lafont R J Insect Sci; 2010; 10():13. PubMed ID: 20575744 [TBL] [Abstract][Full Text] [Related]
23. Isolation of Bacillus thuringiensis for microbiological control of insects. Ali SA; Attia RM Zentralbl Bakteriol Naturwiss; 1978; 133(3):232-4. PubMed ID: 696044 [TBL] [Abstract][Full Text] [Related]
24. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
25. Isolation and purification of a granulosis virus from infected larvae of the Indian meal moth, Plodia interpunctella. Tweeten KA; Bulla LA; Consigli RA Appl Environ Microbiol; 1977 Sep; 34(3):320-7. PubMed ID: 334076 [TBL] [Abstract][Full Text] [Related]
26. The first evidence of the Indian meal moth (Plodia interpunctella) interaction with the silicone moulds. Dąbrowska A Chemosphere; 2022 Jul; 299():134451. PubMed ID: 35364077 [TBL] [Abstract][Full Text] [Related]
27. Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills. Doud CW; Phillips TW J Econ Entomol; 2000 Dec; 93(6):1842-7. PubMed ID: 11142321 [TBL] [Abstract][Full Text] [Related]
28. Insect resistance to Bacillus thuringiensis: alterations in the indianmeal moth larval gut proteome. Candas M; Loseva O; Oppert B; Kosaraju P; Bulla LA Mol Cell Proteomics; 2003 Jan; 2(1):19-28. PubMed ID: 12601079 [TBL] [Abstract][Full Text] [Related]
29. A new method for evaluating the effects of insecticidal proteins expressed by transgenic plants on ectoparasitoid of target pest. Wang W; Cai W; Wang Z; Zhao J; Hua H Environ Sci Pollut Res Int; 2020 Aug; 27(24):29983-29992. PubMed ID: 32447725 [TBL] [Abstract][Full Text] [Related]
30. [Sex pheromone secondary components of Indian meal moth Plodia interpunctella in China. HU wenlil 2, DU]. Hu W; Du J Ying Yong Sheng Tai Xue Bao; 2005 Sep; 16(9):1751-5. PubMed ID: 16355795 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869 [TBL] [Abstract][Full Text] [Related]
32. Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Han B; Zhang L; Geng L; Jia H; Wang J; Ke L; Li A; Gao J; Wu T; Lu Y; Liu F; Song H; Wei X; Ma S; Zhan H; Wu Y; Liu Y; Wang Q; Diao Q; Zhang J; Dai P Nat Commun; 2023 Nov; 14(1):7073. PubMed ID: 37925529 [TBL] [Abstract][Full Text] [Related]
33. Interactions of Bacillus thuringiensis strains for Plutella xylostella (L.) (Lepidoptera: Plutellidae) susceptibility. Santos MS; Dias NP; Costa LL; De Bortoli CP; Souza EH; Ferreira Santos AC; De Bortoli SA; Polanczyk RA J Invertebr Pathol; 2019 Nov; 168():107255. PubMed ID: 31606356 [TBL] [Abstract][Full Text] [Related]
34. Plodia interpunctella (Lepidoptera: Pyralidae): Intoxication with essential oils isolated from Lippia turbinata (Griseb.) and analysis of neuropeptides and neuropeptide receptors, putative targets for pest control. Corzo FL; Traverso L; Sterkel M; Benavente A; Ajmat MT; Ons S Arch Insect Biochem Physiol; 2020 Jul; 104(3):e21684. PubMed ID: 32329117 [TBL] [Abstract][Full Text] [Related]
35. First Record, Distribution and Occurrence of A Protistan Entomopathogen, Yaman M; Sağlam T; Ertürk Ö Turkiye Parazitol Derg; 2023 Sep; 47(3):151-155. PubMed ID: 37724363 [TBL] [Abstract][Full Text] [Related]
36. Bioactivity of Bacillus thuringiensis (Bacillales: Bacillaceae) on Diatraea saccharalis (Lepidoptera: Crambidae) eggs. Daquila BV; Dossi FC; Moi DA; Moreira DR; Caleffe RR; Pamphile JA; Conte H Pest Manag Sci; 2021 Apr; 77(4):2019-2028. PubMed ID: 33342024 [TBL] [Abstract][Full Text] [Related]
37. PROPOSED MEASURES OF CONTROL MANAGEMENT OF THE GRAPE MOTH, LOBESIA BOTRANA DEN AND SCHIFF (LEPIDOPTERA: TORTRICIDAE), IN REFERENCE TO INFESTATION PERCENTAGES, YIELD LOSS AND ECONOMICS OF CONTROL IN EGYPT. Kordy AM; Zaghloul OA; Mourad AK Commun Agric Appl Biol Sci; 2014; 79(2):253-64. PubMed ID: 26084105 [TBL] [Abstract][Full Text] [Related]
38. [The effects of reactive oxidants on Bacillus thuringiensis parasporal crystals]. Wang W; Qian C; Shen J; Yang S Wei Sheng Wu Xue Bao; 1999 Oct; 39(5):469-74. PubMed ID: 12555530 [TBL] [Abstract][Full Text] [Related]
39. [Correlation between insecticidal and antibiotic activities of Bacillus thuringiensis parasporal crystals]. Egorov NS; Iudina TG; Baranov AIu Mikrobiologiia; 1990; 59(3):448-52. PubMed ID: 2175834 [TBL] [Abstract][Full Text] [Related]
40. Genomics and Proteomics Analyses Revealed Novel Candidate Pesticidal Proteins in a Lepidopteran-Toxic Khorramnejad A; Gomis-Cebolla J; Talaei-Hassanlouei R; Bel Y; Escriche B Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33114565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]