These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 485153)

  • 1. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola.
    Turner KW; Roberton AM
    Appl Environ Microbiol; 1979 Jul; 38(1):7-12. PubMed ID: 485153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism and growth yields in Bacteroides ruminicola strain b14.
    Howlett MR; Mountfort DO; Turner KW; Roberton AM
    Appl Environ Microbiol; 1976 Aug; 32(2):274-83. PubMed ID: 970946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
    Hasona A; Kim Y; Healy FG; Ingram LO; Shanmugam KT
    J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ
    Arch Microbiol; 1993; 159(5):465-71. PubMed ID: 8484709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
    Choudhury D; Saini S
    Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentose metabolism in Mycobacterium smegmatis: specificity of induction of pentose isomerases.
    Izumori K; Yamanaka K; Elbein D
    J Bacteriol; 1976 Nov; 128(2):587-91. PubMed ID: 977547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
    Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-xylose catabolism in Bacteroides xylanolyticus X5-1.
    Biesterveld S; Kok MD; Dijkema C; Zehnder AJ; Stams AJ
    Arch Microbiol; 1994; 161(6):521-7. PubMed ID: 8048843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of xylose and hemicellulose hydrolysates by an ethanol-adapted culture of Bacteroides polypragmatus.
    Patel GB; MacKenzie CR; Agnew BJ
    Arch Microbiol; 1986 Oct; 146(1):68-73. PubMed ID: 3813774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.
    Verhoeven MD; de Valk SC; Daran JG; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30010916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens.
    Strobel HJ
    FEMS Microbiol Lett; 1994 Oct; 122(3):217-22. PubMed ID: 7988863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PENTOSE UTILIZATION BY PEDIOCOCCUS PENTOSACEUS.
    DOBROGOSZ WJ; DEMOSS RD
    J Bacteriol; 1963 Jun; 85(6):1356-64. PubMed ID: 14047230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhamnose catabolism in Bacteroides thetaiotaomicron is controlled by the positive transcriptional regulator RhaR.
    Patel EH; Paul LV; Patrick S; Abratt VR
    Res Microbiol; 2008; 159(9-10):678-84. PubMed ID: 18848625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae.
    Badía J; Ros J; Aguilar J
    J Bacteriol; 1985 Jan; 161(1):435-7. PubMed ID: 3918008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.
    Gyamerah M; Ampaw-Asiedu M; Mackey J; Menezes B; Woldesenbet S
    Lett Appl Microbiol; 2018 Jun; 66(6):549-557. PubMed ID: 29573262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium.
    Obradors N; Badía J; Baldomà L; Aguilar J
    J Bacteriol; 1988 May; 170(5):2159-62. PubMed ID: 3283105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbinose utilization by xylose-fermenting yeasts and fungi.
    McMillan JD; Boynton BL
    Appl Biochem Biotechnol; 1994; 45-46():569-84. PubMed ID: 8010769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.