These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 485153)
21. l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423. Diallo M; Simons AD; van der Wal H; Collas F; Houweling-Tan B; Kengen SWM; López-Contreras AM Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578270 [TBL] [Abstract][Full Text] [Related]
22. Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Xin B; Wang Y; Tao F; Li L; Ma C; Xu P Sci Rep; 2016 Jan; 6():19044. PubMed ID: 26750307 [TBL] [Abstract][Full Text] [Related]
23. Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources. Granados-Arvizu JA; Madrigal-Perez LA; Canizal-García M; González-Hernández JC; García-Almendárez BE; Regalado-González C FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30500899 [TBL] [Abstract][Full Text] [Related]
24. Fermentation of maize bran, oat bran, and wheat bran by Bacteroides ovatus V975. Martin SA; Morrison WH; Akin DE Curr Microbiol; 1998 Feb; 36(2):90-5. PubMed ID: 9425246 [TBL] [Abstract][Full Text] [Related]
25. [Metabolic ability in fecal strains of the species Eggerthella]. Reinhold L Arch Hyg Bakteriol; 1968 Dec; 152(5):509-16. PubMed ID: 5741517 [No Abstract] [Full Text] [Related]
26. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
27. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. Macy J; Probst I; Gottschalk G J Bacteriol; 1975 Aug; 123(2):436-42. PubMed ID: 1150622 [TBL] [Abstract][Full Text] [Related]
28. [Arabinose, melibiose and xylose oxidation and fermentation in "Serratia" (author's transl)]. Piguet JD Ann Microbiol (Paris); 1978; 129B(2):167-73. PubMed ID: 718021 [TBL] [Abstract][Full Text] [Related]
29. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ mSystems; 2018; 3(5):. PubMed ID: 30374459 [TBL] [Abstract][Full Text] [Related]
30. Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose. Mountfort DO; Roberton AM J Gen Microbiol; 1978 Jun; 106(2):353-60. PubMed ID: 670931 [TBL] [Abstract][Full Text] [Related]
31. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Li K; Frost JW Biotechnol Prog; 1999; 15(5):876-83. PubMed ID: 10514257 [TBL] [Abstract][Full Text] [Related]
33. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
34. Effect of long generation times on growth of Bacteroides thetaiotaomicron in carbohydrate-induced continuous culture. Kotarski SF; Salyers AA J Bacteriol; 1981 Jun; 146(3):853-60. PubMed ID: 7240086 [TBL] [Abstract][Full Text] [Related]
35. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562 [TBL] [Abstract][Full Text] [Related]
36. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation. Bock AK; Schönheit P J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692 [TBL] [Abstract][Full Text] [Related]
37. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Matte A; Forsberg CW; Verrinder Gibbins AM Can J Microbiol; 1992 May; 38(5):370-6. PubMed ID: 1643581 [TBL] [Abstract][Full Text] [Related]
38. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747 [TBL] [Abstract][Full Text] [Related]
39. BACTEROIDES ORALIS, PROPOSED NEW SPECIES ISOLATED FROM THE ORAL CAVITY OF MAN. LOESCHE WJ; SOCRANSKY SS; GIBBONS RJ J Bacteriol; 1964 Nov; 88(5):1329-37. PubMed ID: 14234789 [TBL] [Abstract][Full Text] [Related]
40. Uptake of D-xylose and L-arabinose in Haloferax volcanii involves an ABC transporter of the CUT1 subfamily. Johnsen U; Ortjohann M; Sutter JM; Geweke S; Schönheit P FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31089701 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]