These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4851861)

  • 1. Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties.
    Hagler AT; Lifson S
    J Am Chem Soc; 1974 Aug; 96(17):5327-35. PubMed ID: 4851861
    [No Abstract]   [Full Text] [Related]  

  • 2. Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals.
    Hagler AT; Huler E; Lifson S
    J Am Chem Soc; 1974 Aug; 96(17):5319-27. PubMed ID: 4851860
    [No Abstract]   [Full Text] [Related]  

  • 3. Evidence for the presence of hydrogen-bonded secondary structure in angiotensin II in aqueous solution.
    Printz MP; Williams HP; Craig LC
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):378-82. PubMed ID: 4333981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADRENOCORTICOTROPINS. XXXIV. ASPECTS OF STRUCTURE--ACTIVITY RELATIONSHIPS OF THE ACTH MOLECULE. SYNTHESIS OF A HEPTADECAPEPTIDE AMIDE, AN OCTADECAPEPTIDE AMIDE, AND A NONADECAPEPTIDE AMIDE POSSESSING HIGH BIOLOGICAL ACTIVITIES.
    RAMACHANDRAN J; CHUNG D; LI CH
    J Am Chem Soc; 1965 Jun; 87():2696-708. PubMed ID: 14292168
    [No Abstract]   [Full Text] [Related]  

  • 5. Spatial electron distribution and population analysis of amides, carboxylic acid, and peptides, and their relation to empirical potential functions.
    Hagler AT; Lapiccirella A
    Biopolymers; 1976 Jun; 15(6):1167-1200. PubMed ID: 1268320
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of conformation on isotopic exchange in synthetic polypeptides.
    Miller WG
    Biochemistry; 1970 Dec; 9(25):4921-30. PubMed ID: 5480157
    [No Abstract]   [Full Text] [Related]  

  • 7. Specific configurations of hydrogen bonding. I. Hydrogen bonding and conformational preferences of N-acylamino-acids, peptides and derivatives.
    Chen CS; Parthasarathy R
    Int J Pept Protein Res; 1978 Jan; 11(1):9-18. PubMed ID: 631990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical calculation of heats of complexation in carbon tetrachloride.
    Amidon GL
    J Pharm Sci; 1974 Oct; 63(10):1520-3. PubMed ID: 4436780
    [No Abstract]   [Full Text] [Related]  

  • 9. Determinaton of thermodynamics of functional groups in solutions of drug molecules.
    Davis SS
    Adv Pharm Sci; 1974; 4():73-261. PubMed ID: 4618036
    [No Abstract]   [Full Text] [Related]  

  • 10. Infrared spectra and resonance interactions of amide-I and II vibration of alpha-helix.
    Nevskaya NA; Chirgadze YN
    Biopolymers; 1976 Apr; 15(4):637-48. PubMed ID: 1252599
    [No Abstract]   [Full Text] [Related]  

  • 11. Non-empirical valence bond calculation of hydrogen bond energy in polypeptides.
    Takashima S
    Biopolymers; 1972; 11(9):1903-11. PubMed ID: 5072736
    [No Abstract]   [Full Text] [Related]  

  • 12. The conformation of angiotensin II. II. The rates of peptide NH exchange with solvent for [Asn1, Val5]angiotensin II, angiotensin III and saralasin.
    Lenkinski RE; Stephens RL; Krishna NR
    Biochim Biophys Acta; 1981 Jan; 667(1):157-67. PubMed ID: 7213793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytic potential energy function for the amide-amide and amide-water intermolecular hydrogen bonds in peptides.
    Sun CL; Jiang XN; Wang CS
    J Comput Chem; 2009 Nov; 30(15):2567-75. PubMed ID: 19373825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of an amide-hydrogen bond in an apolar environment.
    Klotz IM; Farnham SB
    Biochemistry; 1968 Nov; 7(11):3879-82. PubMed ID: 5722255
    [No Abstract]   [Full Text] [Related]  

  • 15. Intermolecular interaction effects in the amide I vibrations of polypeptides.
    Krimm S; Abe Y
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):2788-92. PubMed ID: 4507602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational change of the triple-helical structure. III. Stabilizing forces in the triple helix.
    Suto K; Noda H
    Biopolymers; 1974 Dec; 13(12):2461-75. PubMed ID: 4441605
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy relaxation of the amide-I mode in hydrogen-bonded peptide units: a route to conformational change.
    Pouthier V
    J Chem Phys; 2008 Feb; 128(6):065101. PubMed ID: 18282072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure effects on peptide group hydrogen exchange.
    Molday RS; Englander SW; Kallen RG
    Biochemistry; 1972 Jan; 11(2):150-8. PubMed ID: 5061873
    [No Abstract]   [Full Text] [Related]  

  • 19. The molecular and crystal structures of 4-N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine trihydrate and 4-N-(beta-D-glucopyranosyl)-L-asparagine monohydrate. The x-ray analysis of a carbohydrate-peptide linkage.
    Delbaere LT
    Biochem J; 1974 Oct; 143(1):197-205. PubMed ID: 4464850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal and charge-induced coil to -helix transition of poly-L-glutamic acid and random L-glutamic acid-L-alanine copolymers.
    Warashina A; Ikegami A
    Biopolymers; 1972 Mar; 11(3):529-47. PubMed ID: 5016115
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.