These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4851868)

  • 1. Enhancing effect of calcium ions on transport of cholesterol from aqueous sodium taurocholate-lecithin micellar phase to oil phase.
    Surpuriya V; Higuchi WI
    J Pharm Sci; 1974 Aug; 63(8):1325-7. PubMed ID: 4851868
    [No Abstract]   [Full Text] [Related]  

  • 2. Two-step interfacial barrier mechanism for the transport of micelle-solubilized solute across an oil-water interface.
    Surpuriya V; Higuchi WI
    Biochim Biophys Acta; 1972 Dec; 290(1):375-83. PubMed ID: 4640769
    [No Abstract]   [Full Text] [Related]  

  • 3. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions.
    Mazer NA; Carey MC
    Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion in bile and its implications on detergency.
    Sehlin RC; Cussler EL; Evans DF
    Biochim Biophys Acta; 1975 Jun; 388(3):385-96. PubMed ID: 1137718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol.
    Gregory DH; Vlahcevic ZR; Schatzki P; Swell L
    J Clin Invest; 1975 Jan; 55(1):105-14. PubMed ID: 1109174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model transport studies utilizing lecithin spherules IV: transport of D-glucose in spherules prepared from lecithin, dicetyl phosphate, and cholesterol.
    Chowhan ZU; Higuchi WI
    J Pharm Sci; 1974 Sep; 63(9):1428-30. PubMed ID: 4427266
    [No Abstract]   [Full Text] [Related]  

  • 7. Bile acid and bile salt disrupt gastric mucosal barrier in the dog by different mechanisms.
    Duane WC; Wiegand DM; Sievert CE
    Am J Physiol; 1982 Feb; 242(2):G95-9. PubMed ID: 7065146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium dialysis studies on aqueous taurocholate-lecithin solutions: further validation of the method.
    Higuchi WI; Liu CL; Adachi Y; Mazer NA; Lee PH
    Hepatology; 1990 Sep; 12(3 Pt 2):45S-49S; discussion 49S-50S. PubMed ID: 2210656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of bile salt monomer and cholesterol in the aqueous phase.
    Chijiiwa K; Nagai M
    Biochim Biophys Acta; 1989 Feb; 1001(2):111-4. PubMed ID: 2917135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion sorption and the potential profile near a model lecithin membrane.
    Gillespie CJ
    Biochim Biophys Acta; 1970 Mar; 203(1):47-61. PubMed ID: 5445679
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of pH, sodium and calcium ions on the d.c. resistance of black egg lecithin-cholesterol films.
    Ohki S; Goldup A
    Nature; 1968 Feb; 217(5127):458-9. PubMed ID: 5641760
    [No Abstract]   [Full Text] [Related]  

  • 12. Study of water permeability through phospholipid vesicle membranes by 17O NMR.
    Haran N; Shoporer M
    Biochim Biophys Acta; 1976 Apr; 426(4):638-46. PubMed ID: 1259988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the ester carbonyl oxygens of lecithin on the permeability properties of mixed lecithin-cholesterol bilayers.
    Schwarz FT; Paltauf F
    Biochemistry; 1977 Oct; 16(20):4335-9. PubMed ID: 911757
    [No Abstract]   [Full Text] [Related]  

  • 14. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the permeability coefficient of 22Na+ through a synthetic phospholipid-protein membrane.
    Castleden JA; Fleming R
    Biochim Biophys Acta; 1970 Sep; 211(3):478-86. PubMed ID: 5466141
    [No Abstract]   [Full Text] [Related]  

  • 16. Taurocholate- and taurochenodeoxycholate-lecithin micelles: the equilibrium of bile salt between aqueous phase and micelle.
    Duane WC
    Biochem Biophys Res Commun; 1977 Jan; 74(1):223-9. PubMed ID: 836281
    [No Abstract]   [Full Text] [Related]  

  • 17. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a multilayer planar membrane applicable to ion-transport measurement.
    Setaka M; Yano M; Kwan T; Shimizu H
    J Biochem; 1979 Aug; 86(2):355-62. PubMed ID: 225307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol.
    Papahadjopoulos D; Jacobson K; Nir S; Isac T
    Biochim Biophys Acta; 1973 Jul; 311(3):330-48. PubMed ID: 4729825
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.