These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4851869)

  • 1. Enrichment of mutants lacking the phosphoenolpyruvate-dependent phosphotransferase system of Vibrio parahaemolyticus by screening with methyl-alpha-D-glucoside.
    Matsumoto K; Iuchi S; Fujisawa A; Tanaka S
    J Bacteriol; 1974 Aug; 119(2):632-4. PubMed ID: 4851869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-alpha-d-glucoside transport.
    Bourd GI; Erlagaeva RS; Bolshakova TN; Gershanovitch VN
    Eur J Biochem; 1975 May; 53(2):419-27. PubMed ID: 1095369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside.
    Vadeboncoeur C; Trahan L
    Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoenolpyruvate-dependent phosphorylation of alpha-methylglucoside in Streptococcus sanguis ATCC 10556.
    Vadeboncoeur C; Trahan L
    Can J Microbiol; 1983 Jul; 29(7):833-6. PubMed ID: 6616345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a glucose transport system in Vibrio parahaemolyticus.
    Sarker RI; Ogawa W; Tsuda M; Tanaka S; Tsuchiya T
    J Bacteriol; 1994 Dec; 176(23):7378-82. PubMed ID: 7961512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose inhibition of the transport and phosphoenolpyruvate-dependent phosphorylation of galactose and fructose in Vibrio cholerae.
    Bag J
    J Bacteriol; 1974 May; 118(2):764-7. PubMed ID: 4828312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-Deoxy-3-fluoro-D-glucose-resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system.
    Melton T; Kundig W; Hartman PE; Meadow N
    J Bacteriol; 1976 Dec; 128(3):794-800. PubMed ID: 791932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procedure for isolation and enumeration of Vibrio parahaemolyticus.
    Vanderzant C; Nickelson R
    Appl Microbiol; 1972 Jan; 23(1):26-33. PubMed ID: 4333897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
    White RJ
    Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose effect in tgl mutant of Escherichia col K12 defective in methyl-alpha-D-glucoside transport.
    Erlagaeva RS; Bolshakova TN; Shulgina MV; Bourd GI; Gershanovitch VN
    Eur J Biochem; 1977 Jan; 72(1):127-35. PubMed ID: 188655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli].
    Golub EI; Garaev MM
    Biokhimiia; 1975; 40(1):25-31. PubMed ID: 1095077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl-alpha-D-glucoside uptake and splitting by a thermophilic bacillus.
    Reizer J; Thalenfeld B; Grossowicz N
    Nature; 1976 Apr; 260(5550):433-5. PubMed ID: 1256584
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphoenolpyruvate:glycose phosphotransferase system in species of Vibrio, a widely distributed marine bacterial genus.
    Meadow ND; Revuelta R; Chen VN; Colwell RR; Roseman S
    J Bacteriol; 1987 Nov; 169(11):4893-900. PubMed ID: 3667518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium.
    Cordaro JC; Anderson RP; Grogan EW; Wenzel DJ; Engler M; Roseman S
    J Bacteriol; 1974 Oct; 120(1):245-52. PubMed ID: 4608878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Defective utilization of various carbon sources in a mutant of Vibrio parahaemolyticus lacking a component of the phosphoenolpyruvate: sugar phosphotransferace system].
    Fujisawa A; Kubota Y; Tanaka S
    Nihon Saikingaku Zasshi; 1976; 31(6):705-12. PubMed ID: 1034743
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: glucose-negative mutant and regulation of intracellular cyclic AMP.
    Mugharbil U; Cirillo VP
    J Bacteriol; 1978 Jan; 133(1):203-9. PubMed ID: 201608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.