These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside. Vadeboncoeur C; Trahan L Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764 [TBL] [Abstract][Full Text] [Related]
4. Phosphoenolpyruvate-dependent phosphorylation of alpha-methylglucoside in Streptococcus sanguis ATCC 10556. Vadeboncoeur C; Trahan L Can J Microbiol; 1983 Jul; 29(7):833-6. PubMed ID: 6616345 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a glucose transport system in Vibrio parahaemolyticus. Sarker RI; Ogawa W; Tsuda M; Tanaka S; Tsuchiya T J Bacteriol; 1994 Dec; 176(23):7378-82. PubMed ID: 7961512 [TBL] [Abstract][Full Text] [Related]
6. Glucose inhibition of the transport and phosphoenolpyruvate-dependent phosphorylation of galactose and fructose in Vibrio cholerae. Bag J J Bacteriol; 1974 May; 118(2):764-7. PubMed ID: 4828312 [TBL] [Abstract][Full Text] [Related]
8. Procedure for isolation and enumeration of Vibrio parahaemolyticus. Vanderzant C; Nickelson R Appl Microbiol; 1972 Jan; 23(1):26-33. PubMed ID: 4333897 [TBL] [Abstract][Full Text] [Related]
9. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli. White RJ Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472 [TBL] [Abstract][Full Text] [Related]
10. Glucose effect in tgl mutant of Escherichia col K12 defective in methyl-alpha-D-glucoside transport. Erlagaeva RS; Bolshakova TN; Shulgina MV; Bourd GI; Gershanovitch VN Eur J Biochem; 1977 Jan; 72(1):127-35. PubMed ID: 188655 [TBL] [Abstract][Full Text] [Related]
11. [2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli]. Golub EI; Garaev MM Biokhimiia; 1975; 40(1):25-31. PubMed ID: 1095077 [TBL] [Abstract][Full Text] [Related]
12. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane. Reider E; Wagner EF; Schweiger M Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504 [TBL] [Abstract][Full Text] [Related]
13. Methyl-alpha-D-glucoside uptake and splitting by a thermophilic bacillus. Reizer J; Thalenfeld B; Grossowicz N Nature; 1976 Apr; 260(5550):433-5. PubMed ID: 1256584 [No Abstract] [Full Text] [Related]
14. Phosphoenolpyruvate:glycose phosphotransferase system in species of Vibrio, a widely distributed marine bacterial genus. Meadow ND; Revuelta R; Chen VN; Colwell RR; Roseman S J Bacteriol; 1987 Nov; 169(11):4893-900. PubMed ID: 3667518 [TBL] [Abstract][Full Text] [Related]
15. Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium. Cordaro JC; Anderson RP; Grogan EW; Wenzel DJ; Engler M; Roseman S J Bacteriol; 1974 Oct; 120(1):245-52. PubMed ID: 4608878 [TBL] [Abstract][Full Text] [Related]
16. Vinylglycolate resistance in Escherichia coli. Shaw L; Grau F; Kaback HR; Hong JS; Walsh C J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585 [TBL] [Abstract][Full Text] [Related]
17. [Defective utilization of various carbon sources in a mutant of Vibrio parahaemolyticus lacking a component of the phosphoenolpyruvate: sugar phosphotransferace system]. Fujisawa A; Kubota Y; Tanaka S Nihon Saikingaku Zasshi; 1976; 31(6):705-12. PubMed ID: 1034743 [No Abstract] [Full Text] [Related]
18. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside. Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668 [TBL] [Abstract][Full Text] [Related]