These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4852860)

  • 1. Letter: Microbial conversion of antibiotics. II. Deacylation of maridomycin by Actinomycetes.
    Nakahama K; Kishi T; Igarasi S
    J Antibiot (Tokyo); 1974 Jun; 27(6):487-8. PubMed ID: 4852860
    [No Abstract]   [Full Text] [Related]  

  • 2. Microbial conversion of antibiotics. 3. Hydroxylation of maridomycin I and josamycin.
    Nakahama K; Kishi T; Igarasi S
    J Antibiot (Tokyo); 1974 Jun; 27(6):433-41. PubMed ID: 4853208
    [No Abstract]   [Full Text] [Related]  

  • 3. Microbial transformation of antibiotics. III. Reacylation of 4"-depropionyl maridomycin III into maridomycin V (maridomycin K) by Streptomyces sp. strain no. K-342.
    Uyeda M; Mori S; Morita M; Ogata T; Mori M; Shibata M
    J Antibiot (Tokyo); 1977 Dec; 30(12):1130-1. PubMed ID: 599088
    [No Abstract]   [Full Text] [Related]  

  • 4. Microbial conversion of antibiotics. IV. Reduction of maridomycin.
    Nakahama K; Igarasi S
    J Antibiot (Tokyo); 1974 Aug; 27(8):605-9. PubMed ID: 4436146
    [No Abstract]   [Full Text] [Related]  

  • 5. Microbial conversion of antibiotics. I. Deacylation of maridomycin by bacteria.
    Nakahama K; Izawa M; Muroi M; Kishi T; Uchida M
    J Antibiot (Tokyo); 1974 Jun; 27(6):425-32. PubMed ID: 4212166
    [No Abstract]   [Full Text] [Related]  

  • 6. Microbial conversion of anthracycline antibiotics. II. Characterization of the microbial conversion products of auramycinone by Streptomyces coeruleorubidus ATCC 31276.
    Hoshino T; Fujiwara A
    J Antibiot (Tokyo); 1983 Nov; 36(11):1463-7. PubMed ID: 6654755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial transformation of antibiotics. 3. Conversion of clindamycin to 1'-demethylclindamycin and clindamycin sulfoxide by Streptomyces species.
    Argoudelis AD; Coats JH; Mason DJ; Sebek OK
    J Antibiot (Tokyo); 1969 Jul; 22(7):309-14. PubMed ID: 5346041
    [No Abstract]   [Full Text] [Related]  

  • 8. Microbial conversion of milbemycins: microbial conversion of milbemycins A4 and A3 by Streptomyces libani.
    Nakagawa K; Sato K; Tsukamoto Y; Okazaki T; Torikata A
    J Antibiot (Tokyo); 1994 Apr; 47(4):502-6. PubMed ID: 8195053
    [No Abstract]   [Full Text] [Related]  

  • 9. The chemistry of glutarimide antibiotics.
    Johnson F
    Fortschr Chem Org Naturst; 1971; 29():140-208. PubMed ID: 4116931
    [No Abstract]   [Full Text] [Related]  

  • 10. Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis.
    Boeck LD; Fukuda DS; Abbott BJ; Debono M
    J Antibiot (Tokyo); 1988 Aug; 41(8):1085-92. PubMed ID: 3170344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maridomycin, a new macrolide antibiotic. 8. Isolation and structures of metabolites of 9-propionylmaridomycin.
    Muroi M; Izawa M; Kishi T
    J Antibiot (Tokyo); 1974 Jun; 27(6):449-59. PubMed ID: 4853097
    [No Abstract]   [Full Text] [Related]  

  • 12. Microbial and chemical conversion of antibiotic K-41. I. Isolation and identification of conversion product.
    Hoshi M; Shimotohno KW; Endo T; Furihata K; Seto H
    J Antibiot (Tokyo); 1997 Jul; 50(7):631-4. PubMed ID: 9711256
    [No Abstract]   [Full Text] [Related]  

  • 13. 4'-Deacetyl-(-)-griseusins A and B, new naphthoquinone antibiotics from an actinomycete.
    Igarashi M; Chen W; Tsuchida T; Umekita M; Sawa T; Naganawa H; Hamada M; Takeuchi T
    J Antibiot (Tokyo); 1995 Dec; 48(12):1502-5. PubMed ID: 8557610
    [No Abstract]   [Full Text] [Related]  

  • 14. Antibiotics produced by mutants of Streptomyces caelestis. II. N-demethylcelesticetin and N-demethyl-7-O-demethylcelesticetin.
    Argoudelis AD; Coats JH; Lemaux PG; Sebek OK
    J Antibiot (Tokyo); 1973 Jan; 26(1):7-14. PubMed ID: 4781281
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on pentenomycins. I. Production, isolation and properties of pentenomycins I and II, new antibiotics from Streptomyces eurythermus MCRL 0738.
    Umino K; Furumai T; Matsuzawa N; Awataguchi Y; Ito Y
    J Antibiot (Tokyo); 1973 Sep; 26(9):506-12. PubMed ID: 4792064
    [No Abstract]   [Full Text] [Related]  

  • 16. L-681,217, a new and novel member of the efrotomycin family of antibiotics.
    Kempf AJ; Wilson KE; Hensens OD; Monaghan RL; Zimmerman SB; Dulaney EL
    J Antibiot (Tokyo); 1986 Oct; 39(10):1361-7. PubMed ID: 3781906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Induction of antibiotic production in inactive cultures of actinomycetes. Monensin production by a mutant strain 2608 EB-1].
    Malkina ND; Lazhko EI; Lysenkova LN; Dudnik IuV
    Antibiot Khimioter; 1995 Oct; 40(10):3-6. PubMed ID: 8660117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ochracenomicins A, B and C, new benz[a]anthraquinone antibiotics from Amicolatopsis sp.
    Igarashi M; Sasao C; Yoshida A; Naganawa H; Hamada M; Takeuchi T
    J Antibiot (Tokyo); 1995 Apr; 48(4):335-7. PubMed ID: 7775274
    [No Abstract]   [Full Text] [Related]  

  • 19. Microbial transformation of antibiotics. VI. Acylation of chloramphenicol by Streptomyces coelicolor.
    Argoudelis AD; Coats JH
    J Antibiot (Tokyo); 1971 Mar; 24(3):206-8. PubMed ID: 5551377
    [No Abstract]   [Full Text] [Related]  

  • 20. Microbial transformation of antibiotics II. Additional transformation products of maridomycin III.
    Shibata M; Uyeda M; Mori S
    J Antibiot (Tokyo); 1976 Aug; 29(8):824-8. PubMed ID: 993121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.