These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 4853134)
1. Mechanisms of active transport in isolated bacterial membrane vesicles. Further studies on amino acid transport in Staphylococcus aureus membrane vesicles. Short SA; Kaback HR J Biol Chem; 1974 Jul; 249(13):4275-81. PubMed ID: 4853134 [No Abstract] [Full Text] [Related]
2. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. Kaback HR; Barnes EM J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946 [No Abstract] [Full Text] [Related]
3. Amino acid transport and staphylococcal membrane vesicles. Short SA; Kaback HR Ann N Y Acad Sci; 1974 Jul; 236(0):124-43. PubMed ID: 4371336 [No Abstract] [Full Text] [Related]
4. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus. Short SA; White DC; Kaback HR J Biol Chem; 1972 Jan; 247(1):298-304. PubMed ID: 4553437 [No Abstract] [Full Text] [Related]
5. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. Barnes EM; Kaback HR J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922 [No Abstract] [Full Text] [Related]
6. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases. Futai M Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623 [No Abstract] [Full Text] [Related]
7. Transport of 2-keto-3-deoxy-D-gluconate in isolated membrane vesicles of Escherichia coli K12. Lagarde AE; Stoeber FR Eur J Biochem; 1974 Mar; 43(1):197-208. PubMed ID: 4601151 [No Abstract] [Full Text] [Related]
8. Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens. Konings WN; Boonstra J; De Vries W J Bacteriol; 1975 Apr; 122(1):245-9. PubMed ID: 164433 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. Konings WN; Barnes EM; Kaback HR J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061 [No Abstract] [Full Text] [Related]
10. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles. Baldassare JJ; Robertson DE; McAfee AG; Ho C Biochemistry; 1974 Dec; 13(25):5210-4. PubMed ID: 4373033 [No Abstract] [Full Text] [Related]
11. Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles. Short SA; White DC; Kaback HR J Biol Chem; 1972 Dec; 247(23):7452-8. PubMed ID: 4636316 [No Abstract] [Full Text] [Related]
12. Amino acid transport in membrane vesicles of Bacillus subtilis. Konings WN; Freese E J Biol Chem; 1972 Apr; 247(8):2408-18. PubMed ID: 4401701 [No Abstract] [Full Text] [Related]
13. Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. Kaback HR; Reeves JP; Short SA; Lombardi FJ Arch Biochem Biophys; 1974 Jan; 160(1):215-22. PubMed ID: 4597558 [No Abstract] [Full Text] [Related]
14. The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli. Weiner JH J Membr Biol; 1974; 15(1):1-14. PubMed ID: 4600804 [No Abstract] [Full Text] [Related]
15. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species. Matin A; Konings WN Eur J Biochem; 1973 Apr; 34(1):58-67. PubMed ID: 4349657 [No Abstract] [Full Text] [Related]
16. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. Lombardi FJ; Kaback HR J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983 [No Abstract] [Full Text] [Related]
17. Active transport of amino acids by membrane vesicles of Thiobacillus neapolitanus. Matin A; Konings WN; Kuenen JG; Emmens M J Gen Microbiol; 1974 Aug; 83(2):311-8. PubMed ID: 4372294 [No Abstract] [Full Text] [Related]
18. The redox reactions in propionic acid fermentation. IV. Participation of menaquinone in the electron transfer system in Propionibacterium arabinosum. Sone N J Biochem; 1974 Jul; 76(1):137-45. PubMed ID: 4154938 [No Abstract] [Full Text] [Related]
19. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport. Lombardi FJ; Reeves JP; Kaback HR J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982 [No Abstract] [Full Text] [Related]
20. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli. Reeves JP; Hong JS; Kaback HR Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]