These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4853442)

  • 1. On the chemical reactivity of aminoacyl-tRNA ester bond. I. Influence of pH and nature of the acyl group on the rate of hydrolysis.
    Schuber F; Pinck M
    Biochimie; 1974; 56(3):383-90. PubMed ID: 4853442
    [No Abstract]   [Full Text] [Related]  

  • 2. On the chemical reactivity of aminoacyl-tRNA ester bond. 2. Aminolysis by tris and diethanolamine.
    Schuber F; Pinck M
    Biochimie; 1974; 56(3):391-5. PubMed ID: 4853443
    [No Abstract]   [Full Text] [Related]  

  • 3. On the chemical reactivity of aminacyl-tRNA ester bond. 3. Influence of ionic strength, spermidine and methanol on the rate of hydrolysis.
    Schuber F; Pinck M
    Biochimie; 1974; 56(3):397-403. PubMed ID: 4853441
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetic techniques for the investigation of amino acid: tRNA ligases (aminoacyl-tRNA synthetases, amino acid activating enzymes).
    Eigner EA; Loftfield RB
    Methods Enzymol; 1974; 29():601-19. PubMed ID: 4368855
    [No Abstract]   [Full Text] [Related]  

  • 5. Enzymatic deacylation of methionyl-tRNAfMet catalysed by methionyl, isoleucyl and phenylalanyl-tRNA synthetases.
    Sourgoutchov A; Blanquet S; Fayat G; Waller JP
    Eur J Biochem; 1974 Aug; 46(3):431-8. PubMed ID: 4604434
    [No Abstract]   [Full Text] [Related]  

  • 6. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.
    Boyarshin KS; Priss AE; Rayevskiy AV; Ilchenko MM; Dubey IY; Kriklivyi IA; Yaremchuk AD; Tukalo MA
    J Biomol Struct Dyn; 2017 Feb; 35(3):669-682. PubMed ID: 26886480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity modification of phenylalanine: tRNA-ligase of E. coli MRE-600 with N-chlorambucilyl-(14C)-phenylalanyl-tRNA.
    Lavrik OI; Khutoryanskaya LZ
    FEBS Lett; 1974 Mar; 39(3):287-90. PubMed ID: 4604069
    [No Abstract]   [Full Text] [Related]  

  • 8. Aminoacyl transfer: chemical conversion of an aminoacyl adenylate to an imidazolide.
    Lacey JC; White WE
    Biochem Biophys Res Commun; 1972 May; 47(3):565-73. PubMed ID: 5038664
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoaffinity reagents for modification of aminoacyl-tRNA synthetases.
    Budker VG; Knorre DG; Kravchenko VV; Lavrik OI; Nevinsky GA; Teplova NM
    FEBS Lett; 1974 Dec; 49(2):159-62. PubMed ID: 4613574
    [No Abstract]   [Full Text] [Related]  

  • 10. Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase.
    Jakubowski H
    Biochemistry; 1980 Oct; 19(22):5071-8. PubMed ID: 6257275
    [No Abstract]   [Full Text] [Related]  

  • 11. Coordination of Mn++ ions at contact sites between tRNA and aminoacyl-tRNA synthetase.
    Backer JM; Vocel SV; Weiner LM; Oshevskii SI; Lavrik OI
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1019-26. PubMed ID: 236751
    [No Abstract]   [Full Text] [Related]  

  • 12. Applications of kinetic methods to aminoacyl-tRNA synthetases.
    Midelfort CF; Mehler AH
    Methods Enzymol; 1974; 29():627-42. PubMed ID: 4368426
    [No Abstract]   [Full Text] [Related]  

  • 13. Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate.
    Schreier AA; Schimmel PR
    Biochemistry; 1972 Apr; 11(9):1582-9. PubMed ID: 4337554
    [No Abstract]   [Full Text] [Related]  

  • 14. Preparation of polyribosome aminoacyl-transfer ribonucleic acid from the muscle of chick embryos.
    Nwagwu M
    Biochem J; 1975 Jun; 147(3):473-7. PubMed ID: 241328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of the aminoacyl-tRNA synthetase-aminoacyl adenylate complex and amino acid derivatives. A new approach to peptide synthesis.
    Nakajima H; Kitabatake S; Tsurutani R; Tomioka I; Yamamoto K; Imahori K
    Biochim Biophys Acta; 1984 Oct; 790(2):197-9. PubMed ID: 6487635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the specificity of interactions between transfer ribonucleic acids and aminoacyl-tRNA synthetases.
    Pachmann U; Cronvall E; Rigler R; Hirsch R; Wintermeyer W; Zachau HG
    Eur J Biochem; 1973 Nov; 39(1):265-73. PubMed ID: 4589027
    [No Abstract]   [Full Text] [Related]  

  • 19. Aminoacyl-tRNA synthetase complex from rat liver.
    Deutscher MP
    Methods Enzymol; 1974; 29():577-83. PubMed ID: 4850501
    [No Abstract]   [Full Text] [Related]  

  • 20. A new mechanism for the hydrolytic editing function of aminoacyl-trna synthetases. Kinetic specificity for the tRNA substrate.
    Wright HT
    FEBS Lett; 1980 Sep; 118(2):165-71. PubMed ID: 6998731
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.