These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 4854357)
1. Spectral and energetic characteristics of the photoactive particles obtained from chromatophores of the green bacterium Chlorobium limicola. Barsky EL; Borisov AYu ; Fetisova ZG; Samuilov VD FEBS Lett; 1974 Jun; 42(3):275-8. PubMed ID: 4854357 [No Abstract] [Full Text] [Related]
2. Effect of oxidation-reduction potential on light-induced cytochrome and bacteriochlorophyll reactions in chromatophores from the photosynthetic green bacterium Chlorobium. Knaff DB; Buchanan BB; Malkin R Biochim Biophys Acta; 1973 Oct; 325(1):94-101. PubMed ID: 4770734 [No Abstract] [Full Text] [Related]
3. Energy transfer in photoactive complexes obtained from green bacterium Chlorobium limicola. Borisov AY; Fetisova ZG; Godik VI Biochim Biophys Acta; 1977 Sep; 461(3):500-9. PubMed ID: 901779 [No Abstract] [Full Text] [Related]
4. [Kinetics of light-induced redox changes of high-potential cytochrome in the chromatophores of purple sulfur bacteria Ectothiorhodospira shaposhnikovii]. Pottosin II; Shinkarev VP; Rubin AB Biofizika; 1982; 27(6):977-82. PubMed ID: 6297620 [TBL] [Abstract][Full Text] [Related]
5. ATP production in the light and the dark by vesicle preparations isolated from Chlorobium thiosulphatophilum L660. Sykes J; Gibbon JA Biochim Biophys Acta; 1967 Jul; 143(1):173-86. PubMed ID: 6048852 [No Abstract] [Full Text] [Related]
7. Studies on energy and electron transfer systems in the green photosynthetic bacterium Chloropseudomonas ethylica strain 2-K. II. Composition of pigments and electron transfer systems. Shioi Y; Takamiya K; Nishimura M J Biochem; 1974 Aug; 76(2):241-50. PubMed ID: 4372208 [No Abstract] [Full Text] [Related]
8. Primary reactions, plastoquinone and fluorescence yield in subchloroplast fragments prepared with deoxycholate. van Gorkom HJ; Tamminga JJ; Haveman J Biochim Biophys Acta; 1974 Jun; 347(3):417-38. PubMed ID: 4842006 [No Abstract] [Full Text] [Related]
9. Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a--protein antenna trimers from the green bacterium Chlorobium tepidum. Savikhin S; Zhou W; Blankenship RE; Struve WS Biophys J; 1994 Jan; 66(1):110-3. PubMed ID: 8130329 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of the fluorescence change and P8 70 bleaching in chromatophores from Rhodospirillum rubrum. Malkin S; Silberstein B Biochim Biophys Acta; 1972 Sep; 275(3):369-82. PubMed ID: 4627084 [No Abstract] [Full Text] [Related]
11. Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum. Paschinger H; Paschinger J; Gaffron H Arch Mikrobiol; 1974 Mar; 96(4):341-51. PubMed ID: 4209228 [No Abstract] [Full Text] [Related]
12. Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low-intensity picosecond absorption and fluorescence kinetics. Pullerits T; Visscher KJ; Hess S; Sundström V; Freiberg A; Timpmann K; van Grondelle R Biophys J; 1994 Jan; 66(1):236-48. PubMed ID: 8130341 [TBL] [Abstract][Full Text] [Related]
13. Response of dermal melanophores to epinephrine after removal of the epidermal barrier. Stone JP; Chavin W Comp Biochem Physiol A Comp Physiol; 1974 Oct; 49(2A):357-67. PubMed ID: 4153938 [No Abstract] [Full Text] [Related]
14. Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. GOEDHEER JC Biochim Biophys Acta; 1959 Sep; 35():1-8. PubMed ID: 13850395 [No Abstract] [Full Text] [Related]
15. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Monger TG; Cogdell RJ; Parson WW Biochim Biophys Acta; 1976 Oct; 449(1):136-53. PubMed ID: 823977 [TBL] [Abstract][Full Text] [Related]
16. Thiocapsa floridana; a cytological, physical and chemical characterization. II. Physical and chemical characteristics of isolated and reconstituted chromatophores. Takacs BJ; Holt SC Biochim Biophys Acta; 1971 Apr; 233(2):278-95. PubMed ID: 5559469 [No Abstract] [Full Text] [Related]
17. Further evidence for dissipative energy migration via triplet states in photosynthesis. The protective mechanism of carotenoids in Rhodopseudomonas spheroides chromatophores. Renger G; Wolff C Biochim Biophys Acta; 1977 Apr; 460(1):47-57. PubMed ID: 300630 [TBL] [Abstract][Full Text] [Related]
18. Absorption changes of carotenoids and bacteriochlorophyll in energized chromatophores of Rhodospirillum rubrum. Barsky EL; Samuilov VD Biochim Biophys Acta; 1973 Dec; 325(3):454-62. PubMed ID: 4360256 [No Abstract] [Full Text] [Related]
19. Aspartate-187 of cytochrome b is not needed for DCCD inhibition of ubiquinol: cytochrome c oxidoreductase in Rhodobacter sphaeroides chromatophores. Shinkarev VP; Ugulava NB; Takahashi E; Crofts AR; Wraight CA Biochemistry; 2000 Nov; 39(46):14232-7. PubMed ID: 11087372 [TBL] [Abstract][Full Text] [Related]
20. Reaction center preparations of Rhodopseudomonas spheroides: energy transfer and structure. Slooten L Biochim Biophys Acta; 1972 Feb; 256(2):452-66. PubMed ID: 4536949 [No Abstract] [Full Text] [Related] [Next] [New Search]