These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 4855566)

  • 1. Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen.
    Allison MJ; Robinson IM; Baetz AL
    J Bacteriol; 1974 Jan; 117(1):175-80. PubMed ID: 4855566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminal biosynthesis of aromatic amino acids from arylacetic acids, glucose, shikimic acid and phenol.
    Kristensen S
    Br J Nutr; 1974 May; 31(3):357-65. PubMed ID: 4835789
    [No Abstract]   [Full Text] [Related]  

  • 3. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro.
    Yokoyama MT; Carlson JR
    Appl Microbiol; 1974 Mar; 27(3):540-8. PubMed ID: 4545142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoleucine biosynthesis from 2-methylbutyric acid by anaerobic bacteria from the rumen.
    Robinson IM; Allison MJ
    J Bacteriol; 1969 Mar; 97(3):1220-6. PubMed ID: 5813342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan biosynthesis and production of other related compounds from indole and L-serine by mixed ruminal bacteria, protozoa, and their mixture in vitro.
    Mohammed N; Onodera R; Khan RI
    Curr Microbiol; 1999 Oct; 39(4):200-4. PubMed ID: 10486055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruminal bacterial degradation of benzo(b)-thien-4-yl methylcarbamate (Mobam) and effect of Mobam on ruminal bacteria.
    Williams PP; Stolzenberg RL
    Appl Microbiol; 1972 Apr; 23(4):745-9. PubMed ID: 4553142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria.
    Gradel CM; Dehority BA
    Appl Microbiol; 1972 Feb; 23(2):332-40. PubMed ID: 4552890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand.
    Kumla J; Suwannarach N; Matsui K; Lumyong S
    PLoS One; 2020; 15(1):e0227478. PubMed ID: 31899917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acetohydroxamic acid on growth and volatile fatty acid production by rumen bacteria.
    Chan CC; Jones GA
    Can J Microbiol; 1973 Jan; 19(1):27-33. PubMed ID: 4734379
    [No Abstract]   [Full Text] [Related]  

  • 10. Production of indolic compounds by rumen bacteria isolated from grazing ruminants.
    Attwood G; Li D; Pacheco D; Tavendale M
    J Appl Microbiol; 2006 Jun; 100(6):1261-71. PubMed ID: 16696673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition of pectin in vitro by pure strains of rumen bacteria.
    Tomerska H
    Acta Microbiol Pol B; 1971; 3(2):107-15. PubMed ID: 4935386
    [No Abstract]   [Full Text] [Related]  

  • 12. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase.
    Oberhänsli T; Dfago G; Haas D
    J Gen Microbiol; 1991 Oct; 137(10):2273-9. PubMed ID: 1663150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indole-3-Acetic Acid Is Synthesized by the Endophyte
    Jahn L; Hofmann U; Ludwig-Müller J
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum.
    Nutaratat P; Srisuk N; Arunrattiyakorn P; Limtong S
    Arch Microbiol; 2016 Jul; 198(5):429-37. PubMed ID: 26899734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of xylooligosaccharides by selected ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1993 Nov; 59(11):3557-63. PubMed ID: 8285663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of the isovalerate carboxylation pathway of leucine biosynthesis in the rumen.
    Allison MJ; Bucklin JA; Robinson IM
    Appl Microbiol; 1966 Sep; 14(5):807-14. PubMed ID: 5970468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2.
    Mujahid M; Sasikala Ch; Ramana ChV
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1001-8. PubMed ID: 20972782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis.
    Zhang P; Jin T; Kumar Sahu S; Xu J; Shi Q; Liu H; Wang Y
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30974826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana.
    Ouyang J; Shao X; Li J
    Plant J; 2000 Nov; 24(3):327-33. PubMed ID: 11069706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled.
    Ona O; Van Impe J; Prinsen E; Vanderleyden J
    FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.