These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 485690)

  • 41. Influence of morphine and naloxone on the release of noradrenaline from rat cerebellar cortex slices.
    Montel H; Starke K; Taube HD
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 288(4):427-33. PubMed ID: 1178064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of morphine on single unit activity of the amygdala in cats.
    Miyagawa T; Sakurada S; Kisara K; Sato T; Andoh R; Takahashi N; Sakurada T; Shima K
    Jpn J Pharmacol; 1982 Oct; 32(5):867-73. PubMed ID: 7176221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endogenous opioids may mediate post-ictal behavioral depression in amygdaloid-kindled rats.
    Frenk H; Engel J; Ackermann RF; Shavit Y; Liebeskind JC
    Brain Res; 1979 May; 167(2):435-40. PubMed ID: 221069
    [No Abstract]   [Full Text] [Related]  

  • 44. Action of morphine on rat cortical neurons intracellularly recorded in vivo: evidence for an excitatory postsynaptic effect which is naloxone insensitive.
    Bernardi G; Calabresi P; Mercuri N; Stanzione P
    Neuroscience; 1986 May; 18(1):31-41. PubMed ID: 3736858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Opiate and endocrine interaction: morphine effects on hypothalamus and pineal body.
    Dafny N; Burks TF
    Neuroendocrinology; 1976; 22(1):72-88. PubMed ID: 1025484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amygdaloid central nucleus neuronal activity accompanying pavlovian cardiac conditioning: effects of naloxone.
    Hernandez LL; Powell DA; Gibbs CM
    Behav Brain Res; 1990 Dec; 41(1):71-9. PubMed ID: 1963536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of stimulation of locus coeruleus on the evoked potential in the amygdala in rats.
    Oishi R; Watanabe S; Ohmori K; Shibata S; Ueki S
    Jpn J Pharmacol; 1979 Feb; 29(1):105-11. PubMed ID: 572441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Morphine administration in the amygdala or periaqueductal central gray depress serum levels of luteinizing hormone.
    Lakoski JM; Gebhart GF
    Brain Res; 1982 Jan; 232(1):231-7. PubMed ID: 7055705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acute and chronic opiate effects on single units and EEG of medial thalamus and hippocampus: a latency analysis.
    Linseman MA; Grupp LA
    Psychopharmacology (Berl); 1980; 71(1):11-20. PubMed ID: 6779320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrophysiological evidence of photic, acoustic, and central input to the pineal body and hypothalamus.
    Dafny N
    Exp Neurol; 1977 May; 55(2):449-57. PubMed ID: 858332
    [No Abstract]   [Full Text] [Related]  

  • 51. Effects of naloxone and repeated stimulus presentation on cortical somatosensory evoked potential (SEP) amplitude in the rat.
    Dowman R; Rosenfeld JP
    Exp Neurol; 1985 Jul; 89(1):9-23. PubMed ID: 4007118
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential display of hippocampal and amygdaloid influences on hypothalamic evoked potentials.
    Ishida S; Kawakami M
    Acta Neurol Scand; 1978 Apr; 57(4):295-9. PubMed ID: 665151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophysiological support in favor of multiple opiate receptors in the caudate and the central gray of the rat.
    Schurr A; Rigor BM; Ho BT; Dafny N
    Comp Biochem Physiol C Comp Pharmacol; 1982; 73(2):323-30. PubMed ID: 6129100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavioural dissociation of the enkephalinergic systems of nucleus accumbens and nucleus caudatus.
    Dill RE; Costa E
    Neuropharmacology; 1977 May; 16(5):323-6. PubMed ID: 194170
    [No Abstract]   [Full Text] [Related]  

  • 55. The role of the olfactory tubercle in the effects of cocaine, morphine and brain-stimulation reward.
    Kornetsky C; Huston-Lyons D; Porrino LJ
    Brain Res; 1991 Feb; 541(1):75-81. PubMed ID: 2029627
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unit activity of amygdala and hippocampal neurons: effects of morphine and benzodiazepines.
    Chou DT; Wang SC
    Brain Res; 1977 May; 126(3):427-40. PubMed ID: 861730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effects of capsaicin on spontaneous unit discharges in amygdala single neurons of cats].
    Miyagawa T; Andoh R; Sakurada S; Sakurada T; Kisara K; Osawa K
    Nihon Yakurigaku Zasshi; 1987 Jan; 89(1):25-31. PubMed ID: 3570102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuroanatomical focus for morphine and enkephalin-induced hypermotility.
    Pert A; Sivit C
    Nature; 1977 Feb; 265(5595):645-7. PubMed ID: 558514
    [No Abstract]   [Full Text] [Related]  

  • 59. Unit activity indicators of a catecholamine role in expression of morphine effects.
    Forney E; Klemm WR
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(1):73-82. PubMed ID: 6304815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Patterns of unit responses to incremental doses of morphine in central gray, reticular formation, medial thalamus, caudate nucleus, hypothalamus, septum and hippocampus in unanesthetized rats.
    Dafny N; Brown M; Burks TF; Rigor BM
    Neuropharmacology; 1979 May; 18(5):489-95. PubMed ID: 460545
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.