BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4857360)

  • 1. Preparation of an immobilized two-enzyme system, beta-amylase-pullulanase, to an acrylic copolymer for the conversion of starch to maltose. II. Cocoupling of the enzymes and use in a packed bed column.
    Mårtensson K
    Biotechnol Bioeng; 1974 May; 16(5):579-91. PubMed ID: 4857360
    [No Abstract]   [Full Text] [Related]  

  • 2. Preparation of an immobilized two-enzyme system, beta-amylase-pullulanase, to an acrylic copolymer for the conversion of starch to copolymer for the conversion of starch to maltose. I. Preparation and stability of immobilized beta-amylase.
    Mårtensson K
    Biotechnol Bioeng; 1974 May; 16(5):567-77. PubMed ID: 4857359
    [No Abstract]   [Full Text] [Related]  

  • 3. Preparation of an immobilized two-enzyme system, Beta-amylase--pullulanase, to an acrylic copolymer for the conversion of starch to maltose. III. Process kinetic studies on continuous reactors.
    Mårtensson K
    Biotechnol Bioeng; 1974 Dec; 16(12):1567-87. PubMed ID: 4474893
    [No Abstract]   [Full Text] [Related]  

  • 4. Use of co-immobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield.
    Atia KS; Ismail SA; El-Arnaouty MB; Dessouki AM
    Biotechnol Prog; 2003; 19(3):853-7. PubMed ID: 12790649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Schardinger beta-dextrin by soluble and immobilized cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp.
    Nakamura N; Horikoshi K
    Biotechnol Bioeng; 1977 Jan; 19(1):87-99. PubMed ID: 14746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic model for the co-action of beta-amylase and debranching enzymes in the production of maltose.
    Jiahua Z
    Biotechnol Bioeng; 1999 Mar; 62(5):618-22. PubMed ID: 10099571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent coupling of pullulanase to an acrylic copolymer using a water soluble carbodi-imide.
    Mårtensson K; Mosbach K
    Biotechnol Bioeng; 1972 Sep; 14(5):715-24. PubMed ID: 5071665
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.
    Sun Y; Duan X; Wang L; Wu J
    J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.
    Umeki K; Yamamoto T
    J Biochem; 1975 Nov; 78(5):897-903. PubMed ID: 814118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS.
    Shewale SD; Pandit AB
    Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Classification of pullulanase as an exoenzyme by means of gas chromatography].
    Wallenfels K; Rached IR; Hucho F
    Eur J Biochem; 1969 Jan; 7(2):231-3. PubMed ID: 5765736
    [No Abstract]   [Full Text] [Related]  

  • 12. Fermentation of starch by Klebsiella oxytoca p2, containing plasmids with alpha-amylase and pullulanase genes.
    dos Santos VL; Araújo EF; de Barros EG; Guimarães WV
    Biotechnol Bioeng; 1999 Dec; 65(6):673-6. PubMed ID: 10550774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii.
    Moreira FG; Lenartovicz V; Peralta RM
    J Basic Microbiol; 2004; 44(1):29-35. PubMed ID: 14768025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization.
    Gomes I; Gomes J; Steiner W
    Bioresour Technol; 2003 Nov; 90(2):207-14. PubMed ID: 12895565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of enzymes by radiopolymerization of acrylamide.
    Kawashima K; Umeda K
    Biotechnol Bioeng; 1974 May; 16(5):609-21. PubMed ID: 4151503
    [No Abstract]   [Full Text] [Related]  

  • 16. Production of saccharogenic and dextrinogenic amylases by Rhizomucor pusillus A 13.36.
    Silva TM; Attili-Angeli D; Carvalho AF; Da Silva R; Boscolo M; Gomes E
    J Microbiol; 2005 Dec; 43(6):561-8. PubMed ID: 16410774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of alpha-amylase and protease by Streptomyces olivaceus 142. I. Regulation of alpha-amylase activity.
    Wojskowicz J
    Acta Microbiol Pol; 1977; 26(2):149-62. PubMed ID: 67763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the ability of pullulanase to stimulate the enzymic digestion of raw starch.
    Ueda S; Marshall JJ
    Carbohydr Res; 1980 Sep; 84(1):196-9. PubMed ID: 6158372
    [No Abstract]   [Full Text] [Related]  

  • 19. Corn fiber hydrolysis by Thermobifida fusca extracellular enzymes.
    Irwin D; Leathers TD; Greene RV; Wilson DB
    Appl Microbiol Biotechnol; 2003 May; 61(4):352-8. PubMed ID: 12743765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.