These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4859434)

  • 1. On sensory cells in the human otocyst.
    Yokoh Y
    Acta Anat (Basel); 1974; 87(1):72-6. PubMed ID: 4859434
    [No Abstract]   [Full Text] [Related]  

  • 2. [Perinatal changes in nuclear size of the nerve cells in the ganglion spirale cochleae of guinea pigs].
    Wüstenfeld E; Mösseler HP
    Z Anat Entwicklungsgesch; 1970; 132(3):282-90. PubMed ID: 5490541
    [No Abstract]   [Full Text] [Related]  

  • 3. Early formation of nerve fibers in the human otocyst.
    Yoko Y
    Acta Anat (Basel); 1971; 80(1):99-106. PubMed ID: 5167288
    [No Abstract]   [Full Text] [Related]  

  • 4. Central projections of the statoacoustic nerve in Caiman crocodilus.
    Leake PA
    Brain Behav Evol; 1974; 10(1-3):170-96. PubMed ID: 4455353
    [No Abstract]   [Full Text] [Related]  

  • 5. Islet-1 expression in the developing chicken inner ear.
    Li H; Liu H; Sage C; Huang M; Chen ZY; Heller S
    J Comp Neurol; 2004 Sep; 477(1):1-10. PubMed ID: 15281076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of removal of the statoacoustic ganglion complex upon the growing otocyst.
    Van De Water TR
    Ann Otol Rhinol Laryngol; 1976; 85(6 Suppl 33 Pt 2):2-31. PubMed ID: 999150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells.
    Lang H; Fekete DM
    Dev Biol; 2001 Jun; 234(1):120-37. PubMed ID: 11356024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-183 family members regulate sensorineural fates in the inner ear.
    Li H; Kloosterman W; Fekete DM
    J Neurosci; 2010 Mar; 30(9):3254-63. PubMed ID: 20203184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner ear.
    Germiller JA; Smiley EC; Ellis AD; Hoff JS; Deshmukh I; Allen SJ; Barald KF
    Dev Dyn; 2004 Dec; 231(4):815-27. PubMed ID: 15517566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroporation-mediated gene transfer to the developing mouse inner ear.
    Brigande JV; Gubbels SP; Woessner DW; Jungwirth JJ; Bresee CS
    Methods Mol Biol; 2009; 493():125-39. PubMed ID: 18839345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates.
    Baird IL
    Brain Behav Evol; 1974; 10(1-3):11-36. PubMed ID: 4455350
    [No Abstract]   [Full Text] [Related]  

  • 12. Embryogenesis of the ear and its central projection.
    Costa A
    Adv Exp Med Biol; 1972; 30():291-303. PubMed ID: 4662269
    [No Abstract]   [Full Text] [Related]  

  • 13. In vitro differentiation of mouse embryo statoacoustic ganglion and sensory epithelium.
    Raymond J
    Hear Res; 1987; 28(1):45-56. PubMed ID: 3610860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Septin7 regulates inner ear formation at an early developmental stage.
    Torii H; Yoshida A; Katsuno T; Nakagawa T; Ito J; Omori K; Kinoshita M; Yamamoto N
    Dev Biol; 2016 Nov; 419(2):217-228. PubMed ID: 27634570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epithelial autonomy in the development of the inner ear of a bird embryo.
    Swanson GJ; Howard M; Lewis J
    Dev Biol; 1990 Feb; 137(2):243-57. PubMed ID: 2303163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of epithelial cell death during early development of the human inner ear.
    Represa JJ; Moro JA; Gato A; Pastor F; Barbosa E
    Ann Otol Rhinol Laryngol; 1990 Jun; 99(6 Pt 1):482-8. PubMed ID: 2350134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor.
    Bianchi LM; Cohan CS
    Dev Biol; 1993 Sep; 159(1):353-65. PubMed ID: 8365572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of neural fate and control of inner ear morphogenesis by Tbx1.
    Raft S; Nowotschin S; Liao J; Morrow BE
    Development; 2004 Apr; 131(8):1801-12. PubMed ID: 15084464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the vertebrate inner ear.
    Rinkwitz S; Bober E; Baker R
    Ann N Y Acad Sci; 2001 Oct; 942():1-14. PubMed ID: 11710453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.