BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 4860971)

  • 1. On the mechanism of ATP cleavage in the phosphoenolpyruvate synthase reaction of Escherichia coli.
    Berman K; Itada N; Cohn M
    Biochim Biophys Acta; 1967 Jun; 141(1):214-6. PubMed ID: 4860971
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of the phosphoenolpyruvate synthase reaction.
    Cooper RA; Kornberg HL
    Biochim Biophys Acta; 1967 Jun; 141(1):211-3. PubMed ID: 4293109
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphoenolpyruvate synthetase. Partial reactions studied with adenosine triphosphate analogues and the inorganic phosphate-H2 18O exchange reaction.
    Berman KM; Cohn M
    J Biol Chem; 1970 Oct; 245(20):5319-25. PubMed ID: 4319238
    [No Abstract]   [Full Text] [Related]  

  • 4. Some properties of Escherichia coli adenyl cyclase.
    Tao M; Huberman A
    Arch Biochem Biophys; 1970 Nov; 141(1):236-40. PubMed ID: 4921064
    [No Abstract]   [Full Text] [Related]  

  • 5. An adenosine 3',5'-monophosphate-dependent protein kinase from Escherichia coli.
    Kuo JF; Greengard P
    J Biol Chem; 1969 Jun; 244(12):3417-9. PubMed ID: 4307314
    [No Abstract]   [Full Text] [Related]  

  • 6. The formation and reactions of a nonphosphorylated high energy form of succinyl coenzyme A synthetase.
    Moyer RW; Ramaley RF; Butler LG; Boyer PD
    J Biol Chem; 1967 Oct; 242(19):4299-309. PubMed ID: 4863738
    [No Abstract]   [Full Text] [Related]  

  • 7. Adenosine triphosphate conservation in biosynthetic regulation. Escherichia coli phosphoribosylpyrophosphate synthase.
    Atkinson DE; Fall L
    J Biol Chem; 1967 Jul; 242(13):3241-2. PubMed ID: 4291074
    [No Abstract]   [Full Text] [Related]  

  • 8. The asparagine synthetase of Escherichia coli. II. Studies on mechanism.
    Cedar H; Schwartz JH
    J Biol Chem; 1969 Aug; 244(15):4122-7. PubMed ID: 4895362
    [No Abstract]   [Full Text] [Related]  

  • 9. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 10. Substrate synergism and phosphoenzyme formation in catalysis by succinyl coenzyme A synthetase.
    Bridger WA; Millen WA; Boyer PD
    Biochemistry; 1968 Oct; 7(10):3608-16. PubMed ID: 4878702
    [No Abstract]   [Full Text] [Related]  

  • 11. Properties and mechanism of action of pyruvate, phosphate dikinase from leaves.
    Andrews TJ; Hatch MD
    Biochem J; 1969 Aug; 114(1):117-25. PubMed ID: 5810041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli.
    Lazdunski M; Petitclerc C; Chappelet D; Lazdunski C
    Eur J Biochem; 1971 May; 20(1):124-39. PubMed ID: 4325354
    [No Abstract]   [Full Text] [Related]  

  • 13. An ATP-dependent deoxyribonuclease from Escherichia coli with a possible role in genetic recombination.
    Oishi M
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1292-9. PubMed ID: 4916924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of 5,6-dihydrouridine 5'-triphosphate in the reaction catalyzed by Escherichia coli RNA polymerase.
    Roy-Burman P; Roy-Burman S; Visser DW
    Biochim Biophys Acta; 1967 Jul; 142(2):355-67. PubMed ID: 4861436
    [No Abstract]   [Full Text] [Related]  

  • 15. Isolation of a pyrophosphoryl form of pyruvate, phosphate dikinase from Propionibacteria.
    Milner Y; Wood HG
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2463-8. PubMed ID: 4341696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stereochemical course of D-glyceraldehyde-induced ATPase activity of glycerokinase from Escherichia coli.
    Bethell RC; Lowe G
    Eur J Biochem; 1988 Jun; 174(2):387-9. PubMed ID: 2838275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of polynucleotide kinase by agar, dextran sulfate and other polysaccharide sulfates.
    Wu R
    Biochem Biophys Res Commun; 1971 May; 43(4):927-34. PubMed ID: 4935295
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides.
    Suzuki T
    Biochim Biophys Acta; 1969; 191(3):559-69. PubMed ID: 4312205
    [No Abstract]   [Full Text] [Related]  

  • 19. Incorporation of water oxygens into intracellular nucleotides and RNA. II. Predominantly hydrolytic RNA turnover in Escherichia coli.
    Chaney SG; Boyer PD
    J Mol Biol; 1972 Mar; 64(3):581-91. PubMed ID: 4553854
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase.
    Kingdon HS; Shapiro BM; Stadtman ER
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1703-10. PubMed ID: 4867671
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.