These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 486139)

  • 61. Evidence for the existence of different pools of microsomal phosphatidylinositol by the use of phosphatidylinositol-exchange protein.
    Brophy PJ; Burbach P; Nelemans SA; Westerman J; Wirtz KW; van Deenen LL
    Biochem J; 1978 Aug; 174(2):413-20. PubMed ID: 708393
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Calcium-independent effects of TMB-8. Modification of phospholipid metabolism in neuroblastoma cells by inhibition of choline uptake.
    Palmer FB; Byers DM; Spence MW; Cook HW
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):505-12. PubMed ID: 1530583
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ca2+-dependent and Ca2+-independent degradation of phosphatidylinositol in rabbit vas deferens.
    Egawa K; Sacktor B; Takenawa T
    Biochem J; 1981 Jan; 194(1):129-36. PubMed ID: 6272722
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of carbachol and pancreozymin (cholecystokinin-octapeptide) on polyphosphoinositide metabolism in the rat pancreas in vitro.
    Orchard JL; Davis JS; Larson RE; Farese RV
    Biochem J; 1984 Jan; 217(1):281-7. PubMed ID: 6199018
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effects of 5-hydroxytryptamine and cyclic AMP on the potential profile across isolated salivary glands.
    Prince WT; Berridge MJ
    J Exp Biol; 1972 Apr; 56(2):323-33. PubMed ID: 4336772
    [No Abstract]   [Full Text] [Related]  

  • 66. Transmembrane and transepithelial movement of calcium during stimulus-secretion coupling.
    O'Doherty J; Stark RJ
    Am J Physiol; 1981 Aug; 241(2):G150-8. PubMed ID: 7270692
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Identification of Ca2+ release channels in salivary glands secretory cells of Chironomus plumosus L].
    Man'ko VV; Bychkova SV; Klevets' MIu
    Ukr Biokhim Zh (1999); 2004; 76(1):65-71. PubMed ID: 15909419
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L.
    Brearley CA; Hanke DE
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):145-50. PubMed ID: 8382475
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antigen-stimulated metabolism of inositol phospholipids in the cloned murine mast-cell line MC9.
    Musch MW; Siegel MI
    Biochem J; 1986 Feb; 234(1):205-12. PubMed ID: 2423071
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An insect salivary gland: a model for evaluating hormone action.
    Prince WT; Berridge MJ; Rasmusses H
    Methods Enzymol; 1975; 39():466-76. PubMed ID: 168472
    [No Abstract]   [Full Text] [Related]  

  • 71. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle.
    Baron CB; Pring M; Coburn RF
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C375-83. PubMed ID: 2919664
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gonadotropin-releasing hormone (GnRH) rapidly stimulates the formation of inositol phosphates and diacyglycerol in rat granulosa cells: further evidence for the involvement of Ca2+ and protein kinase C in the action of GnRH.
    Davis JS; West LA; Farese RV
    Endocrinology; 1986 Jun; 118(6):2561-71. PubMed ID: 3009164
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of calcium in fly salivary gland secretion analyzed with the ionophore A-23187.
    Prince WT; Rasmussen H; Berridge MJ
    Biochim Biophys Acta; 1973 Nov; 329(1):98-107. PubMed ID: 4361569
    [No Abstract]   [Full Text] [Related]  

  • 74. The role of cyclic nucleotides and calcium in the regulation of chloride transport.
    Berridge MJ
    Ann N Y Acad Sci; 1980; 341():156-71. PubMed ID: 6249146
    [No Abstract]   [Full Text] [Related]  

  • 75. The differential regulation of the synthesis of ribosomal RNA, 5 S RNA, and 4 S RNA in the polytenic salivary gland cells of the blowfly, Calliphora erythrocephala.
    Griffith JK
    Dev Biol; 1978 Aug; 65(2):353-71. PubMed ID: 680366
    [No Abstract]   [Full Text] [Related]  

  • 76. Effect of some venoms on salivary gland activity.
    Berridge MJ; Russell FE
    Toxicon; 1980; 18(5-6):716-8. PubMed ID: 7222078
    [No Abstract]   [Full Text] [Related]  

  • 77. Protein metabolism by the salivary glands and other organs of the larva of the blowfly, Calliphora erythrocephala.
    Price GM
    J Insect Physiol; 1974 Feb; 20(2):329-47. PubMed ID: 4815640
    [No Abstract]   [Full Text] [Related]  

  • 78. Stimulus-secretion coupling in an insect salivary gland: cell activation by elevated potassium concentrations.
    Berridge MJ; Lindley BD; Prince WT
    J Exp Biol; 1975 Jun; 62(3):629-36. PubMed ID: 1082006
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Methods for altering the synthesis of phosphatidylinositol and phosphatidylglycerol by type II pneumonocytes.
    Bleasdale JE
    Methods Enzymol; 1987; 141():222-34. PubMed ID: 3600358
    [No Abstract]   [Full Text] [Related]  

  • 80. The relationship between secretory activity and the incorporation of P32 into phosphoinositide and phosphotidic acid in salivary glands and pigeon esophageal mucosa in vitro.
    EGGMAN LD; HOKIN LE
    J Biol Chem; 1960 Sep; 235():2569-71. PubMed ID: 13725923
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.