These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 4862767)

  • 21. Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme.
    Cassio D; Waller JP
    Eur J Biochem; 1971 May; 20(2):283-300. PubMed ID: 4934682
    [No Abstract]   [Full Text] [Related]  

  • 22. On the nature of the yeast phenylalanine tran- sfer ribonucleic acid synthetase recognition site.
    Dudock BS; DiPeri C; Michael MS
    J Biol Chem; 1970 May; 245(9):2465-8. PubMed ID: 4909891
    [No Abstract]   [Full Text] [Related]  

  • 23. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence studies of interactions between Escherichia coli valyl-tRNA synthetase and its substrates.
    Hélène C; Brun F; Yaniv M
    J Mol Biol; 1971 May; 58(1):349-56. PubMed ID: 4932655
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on methionyl transfer RNA synthetase from Escherichia coli K12. Amino acid composition and relation of sulfhydryl groups to enzyme activities.
    Lawrence FJ
    Eur J Biochem; 1970 Sep; 15(3):436-41. PubMed ID: 4917101
    [No Abstract]   [Full Text] [Related]  

  • 27. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Analogs of nucleoside polyphosphates. 3. Action of adenosine 5'-phosphohypophosphate on hexokinase and on valyl-tRNA synthetase].
    Remy P; Setondji J; Dirheimer G; Ebel JP
    Biochim Biophys Acta; 1970 Mar; 204(1):31-8. PubMed ID: 4908651
    [No Abstract]   [Full Text] [Related]  

  • 29. Covalent methionylation of Escherichia coli methionyl-tRNA synthethase: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry.
    Gillet S; Hountondji C; Schmitter JM; Blanquet S
    Protein Sci; 1997 Nov; 6(11):2426-35. PubMed ID: 9385645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase.
    Kim HY; Ghosh G; Schulman LH; Brunie S; Jakubowski H
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11553-7. PubMed ID: 8265588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the anticodon region in homologous and heterologous charging of tRNA-Phe.
    Thiebe R; Zachau HG
    Biochem Biophys Res Commun; 1968 Oct; 33(2):260-5. PubMed ID: 4881050
    [No Abstract]   [Full Text] [Related]  

  • 32. In vitro methylation of tRNA by extracts of Chlamydomonas reinhardi.
    Wells C; Moore BG
    Arch Biochem Biophys; 1970 Apr; 137(2):409-14. PubMed ID: 4909166
    [No Abstract]   [Full Text] [Related]  

  • 33. The role of the anticodon in the interaction between methionyl-tRNA synthetase and bacterial initiator tRNA.
    Bruton CJ; Clark BF
    Nucleic Acids Res; 1974 Feb; 1(2):217-21. PubMed ID: 4607244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase.
    Schmitt E; Panvert M; Blanquet S; Mechulam Y
    Nucleic Acids Res; 1995 Dec; 23(23):4793-8. PubMed ID: 8532520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli.
    Jakubowski H
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4504-8. PubMed ID: 2191291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of monovalent cations on the activity of the DNA polymerase of Escherichia coli B.
    Klenow H; Henningsen I
    Eur J Biochem; 1969 May; 9(1):133-41. PubMed ID: 4891612
    [No Abstract]   [Full Text] [Related]  

  • 37. Aminoacylation and polypeptide synthesis with tRNA lacking ribothymidine.
    Svensson I; Isaksson L; Henningsson A
    Biochim Biophys Acta; 1971 May; 238(2):331-7. PubMed ID: 4936435
    [No Abstract]   [Full Text] [Related]  

  • 38. Replacement of Mg 2+ by monovalent cations in aminoacyl transfer RNA formation.
    Igarashi K; Yo M; Takeda Y
    Biochim Biophys Acta; 1971 May; 238(2):314-23. PubMed ID: 4328114
    [No Abstract]   [Full Text] [Related]  

  • 39. Peptides at the tRNA binding site of the crystallizable monomeric form of E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H; Leon O
    Nucleic Acids Res; 1987 Dec; 15(24):10523-30. PubMed ID: 3320968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6755-9. PubMed ID: 6359155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.