These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4863982)

  • 1. Ribosyl and deoxyribosyl transfer by bacterial enzyme systems.
    Imada A; Igarasi S
    J Bacteriol; 1967 Nov; 94(5):1551-9. PubMed ID: 4863982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of pyrimidine bases and nucleosides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells.
    Pérignon JL; Bories DM; Houllier AM; Thuillier L; Cartier PH
    Biochim Biophys Acta; 1987 Apr; 928(2):130-6. PubMed ID: 3567226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deoxyribosyl transfer. 3. Catalysis of 3-pentosylpurine formation by pyrimidine nucleoside phosphorylases.
    Zimmerman M
    J Biol Chem; 1966 Nov; 241(21):4914-6. PubMed ID: 5332665
    [No Abstract]   [Full Text] [Related]  

  • 4. Thymidine and thymine incorporation into deoxyribonucleic acid: inhibition and repression by uridine of thymidine phosphorylase of Escherichia coli.
    Budman DR; Pardee AB
    J Bacteriol; 1967 Nov; 94(5):1546-50. PubMed ID: 4862197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative control of a branch-point enzyme in microorganisms.
    Jensen RA; Nasser DS; Nester EW
    J Bacteriol; 1967 Nov; 94(5):1582-93. PubMed ID: 4964483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles.
    Rader RL; Hochstadt J
    J Bacteriol; 1976 Oct; 128(1):290-301. PubMed ID: 789336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PLATE MICROMETHOD FOR DETERMINATION OF ACETOIN PRODUCED BY BACTERIA.
    KOCWA E
    Arch Immunol Ther Exp (Warsz); 1964; 12():212-7. PubMed ID: 14166660
    [No Abstract]   [Full Text] [Related]  

  • 9. Purine nucleoside phosphorylase: kinetics, mechanism, and specificity.
    Krenitsky TA
    Mol Pharmacol; 1967 Nov; 3(6):526-36. PubMed ID: 6059869
    [No Abstract]   [Full Text] [Related]  

  • 10. Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases.
    Krenitsky TA; Koszalka GW; Tuttle JV
    Biochemistry; 1981 Jun; 20(12):3615-21. PubMed ID: 6789872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEOXYRIBOSYL TRANSFER. II. NUCLEOSIDE:PYRIMIDINE DEOXYRIBOSYLTRANSFERASE ACTIVITY OF THREE PARTIALLY PURIFIED THYMIDINE PHOSPHORYLASES.
    ZIMMERMAN M
    J Biol Chem; 1964 Aug; 239():2622-7. PubMed ID: 14235545
    [No Abstract]   [Full Text] [Related]  

  • 12. Pyrrolidonyl peptidase in bacteria: a new colorimetric test for differentiation of enterobacteriaceae.
    Mulczyk M; Szewczuk A
    J Gen Microbiol; 1970 Apr; 61(1):9-13. PubMed ID: 5489066
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of heat-labile and heat-stable inorganic pyrophosphatases among some bacteria.
    Blumenthal BI; Johnson MK; Johnson EJ
    Can J Microbiol; 1967 Dec; 13(12):1695-9. PubMed ID: 4868878
    [No Abstract]   [Full Text] [Related]  

  • 14. Magnesium ion-independent ribonucleic acid depolymerases in bacteria.
    Wade HE; Robinson HK
    Biochem J; 1966 Nov; 101(2):467-79. PubMed ID: 5338680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A PLATE MICROMETHOD FOR DETERMINING HYDROGEN SULFIDE PRODUCED BY BACTERIA.
    KOCWA E
    Arch Immunol Ther Exp (Warsz); 1964; 12():338-44. PubMed ID: 14186759
    [No Abstract]   [Full Text] [Related]  

  • 16. Asparaginase and glutaminase activities of bacteria.
    Wade HE; Robinson HK; Phillips BW
    J Gen Microbiol; 1971 Dec; 69(3):299-312. PubMed ID: 5004160
    [No Abstract]   [Full Text] [Related]  

  • 17. Correlation of substrate-stabilization patterns with proposed mechanisms for three nucleoside phosphorylases.
    Krenitsky TA; Tuttle JV
    Biochim Biophys Acta; 1982 May; 703(2):247-9. PubMed ID: 6805517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonucleotides and ribonucleosides as methyl acceptors for S-adenosylmethionine: (amino- and thio-)purine methyl-transferases. Incorporation of 6-amino-2-methylaminopurine into ribonucleic acids.
    Remy CN
    Biochim Biophys Acta; 1967 Apr; 138(2):258-75. PubMed ID: 4963395
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of urease formation in certain aerobic bacteria.
    Kaltwasser H; Krämer J; Conger WR
    Arch Mikrobiol; 1972; 81(2):178-96. PubMed ID: 4622647
    [No Abstract]   [Full Text] [Related]  

  • 20. The 5'-nucleotidases and cyclic phosphodiesterases (3'-nucleotidases) of the Enterobacteriaceae.
    Neu HC
    J Bacteriol; 1968 May; 95(5):1732-7. PubMed ID: 4967771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.