These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 486421)

  • 41. Flavine-protein interactions in flavoenzymes. Temperature-jump and stopped-flow studies of flavine analog binding to the apoprotein of Azotobacter flavodoxin.
    Barman BG; Tollin G
    Biochemistry; 1972 Dec; 11(25):4746-54. PubMed ID: 4655252
    [No Abstract]   [Full Text] [Related]  

  • 42. REACTIONS OF MOLYBDENUM COMPOUNDS WITH RIBOFLAVIN.
    MITCHELL PC; WILLIAMS RJ
    Biochim Biophys Acta; 1964 Apr; 86():39-45. PubMed ID: 14166870
    [No Abstract]   [Full Text] [Related]  

  • 43. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
    Olteanu H; Wolthers KR; Munro AW; Scrutton NS; Banerjee R
    Biochemistry; 2004 Feb; 43(7):1988-97. PubMed ID: 14967039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding and oxidation-reduction of monoamine oxidase-type 8alpha-(S-peptidyl) flavins with Azotobacter (Shethna) flavodoxin.
    Shiga K; Tollin G; Falk MC; McCormick DB
    Biochem Biophys Res Commun; 1975 Sep; 66(1):227-34. PubMed ID: 809042
    [No Abstract]   [Full Text] [Related]  

  • 45. Properties of a high-potential flavin analogue and its use as an active site probe with clostridial flavodoxin.
    Raibekas AA; Ramsey AJ; Jorns MS
    Biochemistry; 1993 Apr; 32(16):4420-9. PubMed ID: 8476868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies of reactions between flavins and quinones, mercaptans, and enolates.
    Gibian MJ; Elliott DL; Kelly C; Borge B; Kupecz K
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Sep; 27(9):1016-20. PubMed ID: 4405063
    [No Abstract]   [Full Text] [Related]  

  • 47. Studies on the incorporation of fluorescent pigments into bilayer membranes.
    Trissl HW
    Biochim Biophys Acta; 1974 Nov; 367(3):326-37. PubMed ID: 4473217
    [No Abstract]   [Full Text] [Related]  

  • 48. Conformations and electronic structures of oxidized and reduced isoalloxazine.
    Dixon DA; Lindner DL; Branchaud B; Lipscomb WN
    Biochemistry; 1979 Dec; 18(26):5770-5. PubMed ID: 518869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resonance Raman spectroscopy.
    Li J; Kitagawa T
    Methods Mol Biol; 2014; 1146():377-400. PubMed ID: 24764099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence and optical characteristics of reduced flavins and flavoproteins.
    Ghisla S
    Methods Enzymol; 1980; 66():360-73. PubMed ID: 7374479
    [No Abstract]   [Full Text] [Related]  

  • 52. Flavins of NADPH-cytochrome P-450 reductase: evidence for structural alteration of flavins in their one-electron-reduced semiquinone states from resonance Raman spectroscopy.
    Sugiyama T; Nisimoto Y; Mason HS; Loehr TM
    Biochemistry; 1985 Jun; 24(12):3012-9. PubMed ID: 3925989
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resonance Raman spectral properties of FMN of bovine heart NADH:ubiquinone oxidoreductase suggesting a mechanism for the prevention of spontaneous production of reactive oxygen species.
    Hikita M; Shinzawa-Itoh K; Moriyama M; Ogura T; Kihira K; Yoshikawa S
    Biochemistry; 2013 Jan; 52(1):98-104. PubMed ID: 23215454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the environment and the rotational motion of amphiphilic flavins in artificial membrane vesicles as studied by fluorescence.
    Schmidt W
    J Membr Biol; 1979 May; 47(1):1-25. PubMed ID: 458845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intermolecular complexes between N-methyl-1,4-dihydronicotinamide and flavines. The influence of steric and electronic factors on complex formation and the rate of flavine-dependent dihydronicotinamide dehydrogenation.
    Blankenhorn G
    Biochemistry; 1975 Jul; 14(14):3172-6. PubMed ID: 238584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum electronic stability in selective enrichment of carbon nanotubes.
    Ogunro OO; Wang XQ
    Nano Lett; 2009 Mar; 9(3):1034-8. PubMed ID: 19236011
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resonance Raman study of flavins and the flavoprotein fatty acyl coenzyme A dehydrogenase.
    Benecky M; Li TY; Schmidt J; Frerman F; Watters KL; McFarland J
    Biochemistry; 1979 Aug; 18(16):3471-6. PubMed ID: 476062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetics and mechanism of the isoalloxazine (flavine) dehydrogenation of dimethyl dihydrophthalates.
    Main L; Kasperek GJ; Bruice TC
    Biochemistry; 1972 Oct; 11(21):3991-4000. PubMed ID: 4342899
    [No Abstract]   [Full Text] [Related]  

  • 59. Protein fluorescence and solvent perturbation spectra as probes of flavin--protein interactions in the Shethna flavoprotein.
    D'Anna JA; Tollin G
    Biochemistry; 1971 Jan; 10(1):57-64. PubMed ID: 5538611
    [No Abstract]   [Full Text] [Related]  

  • 60. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.