These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 486444)
61. Differential adaptation of membranes of two osmotolerant fungi, Aspergillus chevalieri and Penicillium expansum to high sucrose concentrations. Hefnawy MA; Abou-Zeid AM Acta Microbiol Pol; 2003; 52(1):53-64. PubMed ID: 12916728 [TBL] [Abstract][Full Text] [Related]
62. Transmembrane transport mechanism of n-hexadecane by Candida tropicalis: Kinetic study and proteomic analysis. Li J; Xu Y; Song Q; Zhang S; Xie L; Yang J Ecotoxicol Environ Saf; 2021 Feb; 209():111789. PubMed ID: 33340957 [TBL] [Abstract][Full Text] [Related]
63. The influence of saturated fatty acid modulation of bilayer physical state on cellular and membrane structure and function. Chester DW; Tourtellotte ME; Melchior DL; Romano AH Biochim Biophys Acta; 1986 Aug; 860(2):383-98. PubMed ID: 3741857 [TBL] [Abstract][Full Text] [Related]
64. [Pyruvate- and alpha-ketoglutarate dehydrogenase activity during yeast growth on glucose and hexadecane]. Sofronova MIu; Glazunova LM; Muntian LN; Finogenova TV; Lozinov AB Mikrobiologiia; 1976; 45(2):266-8. PubMed ID: 933872 [TBL] [Abstract][Full Text] [Related]
65. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Turk M; Montiel V; Žigon D; Plemenitaš A; Ramos J Microbiology (Reading); 2007 Oct; 153(Pt 10):3586-3592. PubMed ID: 17906155 [TBL] [Abstract][Full Text] [Related]
66. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. Scott CC; Finnerty WR J Bacteriol; 1976 Jul; 127(1):481-9. PubMed ID: 179978 [TBL] [Abstract][Full Text] [Related]
67. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Walker JD; Cooney JJ Appl Microbiol; 1973 Nov; 26(5):705-8. PubMed ID: 4762391 [TBL] [Abstract][Full Text] [Related]
68. Structure of membrane lipids and physico-biochemical properties of the plasma membrane from Thermoplasma acidophilum, adapted to growth at 37 degrees C. Yang LL; Haug A Biochim Biophys Acta; 1979 May; 573(2):308-20. PubMed ID: 221032 [TBL] [Abstract][Full Text] [Related]
69. [Some morphological, physiological and biochemical properties of Candida tropicalis K-41, grown on the medium with N-alkanes]. Rudenko VI; Kvasnikov EI; Shchelokova IF Mikrobiol Zh; 1970; 32(6):715-8. PubMed ID: 5519064 [No Abstract] [Full Text] [Related]
70. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath). Jahnke LL FEMS Microbiol Lett; 1992 Jun; 72(3):209-12. PubMed ID: 11537858 [TBL] [Abstract][Full Text] [Related]
71. Influence of supplementation of saturated alkanes on the membrane properties of Microsporum gypseum. Vaidya S; Khuller GK Indian J Biochem Biophys; 1989 Apr; 26(2):98-103. PubMed ID: 2777326 [TBL] [Abstract][Full Text] [Related]
72. Difference in plasma membrane structure between two sublines of Ehrlich-Lettrè ascites tumor cells. Haeffner EW; Heck B; Kolbe K Biochim Biophys Acta; 1982 Dec; 693(2):280-6. PubMed ID: 7159580 [TBL] [Abstract][Full Text] [Related]
73. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. Jollow D; Kellerman GM; Linnane AW J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785 [TBL] [Abstract][Full Text] [Related]
74. Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots. Bohn M; Heinz E; Lüthje S Arch Biochem Biophys; 2001 Mar; 387(1):35-40. PubMed ID: 11368181 [TBL] [Abstract][Full Text] [Related]
75. Comparison of lipid composition of Candida guilliermondii grown on glucose, ethanol and methanol as the sole carbon source. Jigami Y; Suzuki O; Nakasato S Lipids; 1979 Nov; 14(11):937-42. PubMed ID: 513982 [TBL] [Abstract][Full Text] [Related]
76. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Nikolopoulou M; Soucek DA; Vary JC Biochim Biophys Acta; 1985 May; 815(3):486-98. PubMed ID: 3995037 [TBL] [Abstract][Full Text] [Related]
77. Mixed cultures of different yeasts species and yeasts with filamentous fungi in the SCP production. I. Production of single cell protein by mixed cultures Candida lipolytica and Candida tropicalis. Achremowicz B; Kosikowski FV; Masuyama K Acta Microbiol Pol; 1977; 26(3):265-71. PubMed ID: 70971 [TBL] [Abstract][Full Text] [Related]
78. Cell wall canals formed upon growth of Candida maltosa in the presence of hexadecane are associated with polyphosphates. Zvonarev AN; Crowley DE; Ryazanova LP; Lichko LP; Rusakova TG; Kulakovskaya TV; Dmitriev VV FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28475763 [TBL] [Abstract][Full Text] [Related]
79. Influence of sterol structure on yeast plasma membrane properties. Bottema CD; Rodriguez RJ; Parks LW Biochim Biophys Acta; 1985 Mar; 813(2):313-20. PubMed ID: 3882148 [TBL] [Abstract][Full Text] [Related]
80. Fatty acid and hydrocarbon hydroxylation in yeast: role of cytochrome P-450 in Candida tropicalis. Lebeault JM; Lode ET; Coon MJ Biochem Biophys Res Commun; 1971 Feb; 42(3):413-9. PubMed ID: 5542889 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]