These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 486454)

  • 1. Voltage-induced conductance in human erythrocyte membranes.
    Kinosita K; Tsong TY
    Biochim Biophys Acta; 1979 Jul; 554(2):479-97. PubMed ID: 486454
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrical conductance characteristics of some human erythrocyte membranes.
    Talekar SV; Bakore PV; Talekar VL
    Phys Med Biol; 1976 Nov; 21(6):989-92. PubMed ID: 1019241
    [No Abstract]   [Full Text] [Related]  

  • 3. Voltage-induced changes in the conductivity of erythrocyte membranes.
    Kinosita K; Tsong TY
    Biophys J; 1978 Oct; 24(1):373-5. PubMed ID: 708839
    [No Abstract]   [Full Text] [Related]  

  • 4. Giant human erythrocytes by electric-field-induced cell-to-cell fusion.
    Scheurich P; Zimmermann U
    Naturwissenschaften; 1981 Jan; 68(1):45-7. PubMed ID: 7207630
    [No Abstract]   [Full Text] [Related]  

  • 5. Comments on "Erythrocyte and ghost cytoplasmic resistivity and voltage-dependent apparent size".
    Pilwat G; Zimmermann U
    Biophys J; 1985 Oct; 48(4):671-7. PubMed ID: 2413920
    [No Abstract]   [Full Text] [Related]  

  • 6. [Inclusion of erythrocyte membranes into planar lipid bilayers].
    Babunashvili IN; Nenashev VA
    Biofizika; 1982; 27(3):441-4. PubMed ID: 7093327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electrical breakdown of erythrocyte membranes attributed to the diffusion potential difference].
    Putvinskiĭ AV; Popov SA; Puchkova TV; Danilov IuA; Vladimirov IuA
    Biofizika; 1983; 28(3):505-6. PubMed ID: 6871275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage modulation of Na+/K+ transport in human erythrocytes.
    Teissie J; Yow Tsong T
    J Physiol (Paris); 1981 May; 77(9):1043-53. PubMed ID: 6286955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for studying the deformability of isolated erythrocyte membranes.
    Heath BP; Wyatt JL; Mohandas N; Shohet SB
    Prog Clin Biol Res; 1981; 56():195-203. PubMed ID: 7330010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of conductivity changes in black phosphatidylserine membranes induced by proteins from erythrocyte membranes.
    Bleuel H; Widener G; Schubert D
    Z Naturforsch C Biosci; 1977; 32(5-6):375-8. PubMed ID: 141810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electric potential profile across the erythrocyte membrane.
    Heinrich R; Gaestel M; Glaser R
    J Theor Biol; 1982 May; 96(2):211-31. PubMed ID: 7121027
    [No Abstract]   [Full Text] [Related]  

  • 12. [Sedimentation rate of erythrocytes as an indicator for phase transitions in the membrane].
    Beutel U; Glaser R
    Acta Biol Med Ger; 1977; 36(5-6):921-4. PubMed ID: 23642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric-field-induced fusion of enzyme-treated human red cells: kinetics of intermembrane protein exchange.
    Donath E; Arndt R
    Gen Physiol Biophys; 1984 Jun; 3(3):239-49. PubMed ID: 6479580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical properties and glucose permeability of bilayer lipid membranes on incorporation of erythrocyte membrane extracts.
    Jones MN; Nickson JK
    Biochim Biophys Acta; 1978 May; 509(2):260-71. PubMed ID: 656413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane potential and the cytotoxic Ca cascade of human red blood cells.
    Freedman JC; Bifano EM; Crespo LM; Pratap PR; Walenga R; Bailey RE; Zuk S; Novak TS
    Soc Gen Physiol Ser; 1988; 43():217-31. PubMed ID: 3077548
    [No Abstract]   [Full Text] [Related]  

  • 17. Orientation of sickle red blood cells in an alternating electric field.
    Vienken J; Zimmermann U; Alonso A; Chapman D
    Naturwissenschaften; 1984 Mar; 71(3):158-60. PubMed ID: 6728034
    [No Abstract]   [Full Text] [Related]  

  • 18. Computation of the erythrocyte cell membrane parameters from electrophoretical and biochemical data: stern-like electrochemical model of the cell membrane.
    Dołowy K; Godlewski Z
    J Theor Biol; 1980 Jun; 84(4):709-23. PubMed ID: 7431949
    [No Abstract]   [Full Text] [Related]  

  • 19. [Changes in the passive electrical properties of the erythrocytes during hemosorption].
    Pliquett F; Sergienko VI; Wunderlich Z; Kagan VE
    Biull Eksp Biol Med; 1984 Oct; 98(10):414-6. PubMed ID: 6498317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electric potential across the erythrocyte membrane: a mathematical model.
    Heinrich R; Gaestel M; Glaser R
    Acta Biol Med Ger; 1981; 40(6):765-70. PubMed ID: 7324707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.