These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 486467)

  • 1. The transport of L-cysteinesulfinate in rat liver mitochondria.
    Palmieri F; Stipani I; Iacobazzi V
    Biochim Biophys Acta; 1979 Aug; 555(3):531-46. PubMed ID: 486467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Relationship between cysteinesulfinate and aspartate transport in mitochondria].
    Stipani I; Iacobazzi V; Palmieri F
    Boll Soc Ital Biol Sper; 1980 May; 56(10):1012-8. PubMed ID: 7448002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate and aspartate transport in rat brain mitochondria.
    Brand MD; Chappell JB
    Biochem J; 1974 May; 140(2):205-10. PubMed ID: 4375961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxidation of glutamine and glutamate in relation to anion transport in enterocyte mitochondria.
    Evered DF; Masola B
    Biochem J; 1984 Mar; 218(2):449-58. PubMed ID: 6143554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport.
    Patel TB; Clark JB
    Biochem J; 1979 Dec; 184(3):539-46. PubMed ID: 540047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phthalonic acid, an inhibitor of alpha-oxoglutarate transport in mitochondria.
    Meijer AJ; von Woerkom GM; Eggelte TA
    Biochim Biophys Acta; 1976 Apr; 430(1):53-61. PubMed ID: 1260046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate metabolism in relation to glutamate transport in kidney cortex mitochondria of rabbit.
    Bryła J; Dzik JM
    Biochim Biophys Acta; 1978 Oct; 504(1):15-25. PubMed ID: 708719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate.
    Wilson DF; Pastuszko A
    J Neurochem; 1986 Oct; 47(4):1091-7. PubMed ID: 2875128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cysteinesulfinate on fatty acid-dependent uncoupling: modulation of recoupling by substrates of the aspartate/glutamate antiporter and diethyl pyrocarbonate.
    Samartsev VN; Mokhova EN
    Biochemistry (Mosc); 1997 May; 62(5):495-500. PubMed ID: 9275289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme.
    Moreadith RW; Lehninger AL
    J Biol Chem; 1984 May; 259(10):6215-21. PubMed ID: 6144677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the subcellular distribution of metabolites due to ethanol oxidation in the perfused rat liver.
    Soboll S; Heldt HW; Scholz R
    Hoppe Seylers Z Physiol Chem; 1981 Mar; 362(3):247-60. PubMed ID: 7227978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transport of sulphate and sulphite in rat liver mitochondria.
    Crompton M; Palmieri F; Capano M; Quagliariello E
    Biochem J; 1974 Jul; 142(1):127-37. PubMed ID: 4441366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid neurotransmitters in the CNS. Characteristics of the acidic amino acid exchange.
    Erecińska M; Troeger MB
    FEBS Lett; 1986 Apr; 199(1):95-9. PubMed ID: 2869976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats.
    Siess EA; Brocks DG; Wieland OH
    Hoppe Seylers Z Physiol Chem; 1978 Jul; 359(7):785-98. PubMed ID: 680639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyruvate/malate antiporter in rat liver mitochondria.
    Atlante A; Passarella S; Quagliariello E
    Biochem Biophys Res Commun; 1992 Jan; 182(2):931-8. PubMed ID: 1734891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.