These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 486484)

  • 1. Contrasting denaturation maps of Xenopus laevis and Xenopus borealis mitochondrial DNAs.
    Bultmann H; Borkowski JL
    Biochim Biophys Acta; 1979 Sep; 564(2):352-4. PubMed ID: 486484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EVOLUTIONARY INFERENCES FROM RESTRICTION MAPS OF MITOCHONDRIAL DNA FROM NINE TAXA OF XENOPUS FROGS.
    Carr SM; Brothers AJ; Wilson AC
    Evolution; 1987 Jan; 41(1):176-188. PubMed ID: 28563752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Drosophila mitochondrial DNAs. Comparison of denaturation maps.
    Bultmann H; Zakour RA; Sosland MA
    Biochim Biophys Acta; 1976 Nov; 454(1):21-44. PubMed ID: 825147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evoluation of Drosophila mitochondrial DNAs. Analysis of heteroduplex molecules.
    Zakour RA; Bultmann H
    Biochim Biophys Acta; 1979 Sep; 564(2):342-51. PubMed ID: 114222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone gene number and organisation in Xenopus: Xenopus borealis has a homogeneous major cluster.
    Turner PC; Woodland HR
    Nucleic Acids Res; 1983 Feb; 11(4):971-86. PubMed ID: 6298735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species variation in transcription factor IIIA.
    Gaskins CJ; Fiser-Littell RM; Duke AL; Hanas JS
    Nucleic Acids Res; 1989 Jan; 17(2):781-94. PubMed ID: 2783776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The external transcribed spacer and preceding region of Xenopus borealis rDNA: comparison with the corresponding region of Xenopus laevis rDNA.
    Furlong JC; Forbes J; Robertson M; Maden BE
    Nucleic Acids Res; 1983 Dec; 11(23):8183-96. PubMed ID: 6672764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus borealis and Xenopus laevis 28S ribosomal DNA and the complete 40S ribosomal precursor RNA coding units of both species.
    Ajuh PM; Heeney PA; Maden BE
    Proc Biol Sci; 1991 Jul; 245(1312):65-71. PubMed ID: 1682930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization and expression of cloned histone gene clusters from Xenopus laevis and X. borealis.
    Old RW; Woodland HR; Ballantine JE; Aldridge TC; Newton CA; Bains WA; Turner PC
    Nucleic Acids Res; 1982 Dec; 10(23):7561-80. PubMed ID: 6296783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNaseI-hypersensitive sites at promoter-like sequences in the spacer of Xenopus laevis and Xenopus borealis ribosomal DNA.
    La Volpe A; Taggart M; McStay B; Bird A
    Nucleic Acids Res; 1983 Aug; 11(16):5361-80. PubMed ID: 6310495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids.
    Mechkarska M; Prajeep M; Leprince J; Vaudry H; Meetani MA; Evans BJ; Conlon JM
    Peptides; 2013 Jul; 45():1-8. PubMed ID: 23624316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter- and intraspecific variation in restriction maps of Drosophila mitochondrial DNAs.
    Shah DM; Langley CH
    Nature; 1979 Oct; 281(5733):696-9. PubMed ID: 233134
    [No Abstract]   [Full Text] [Related]  

  • 13. Experimental analysis of lens-forming capacity in Xenopus borealis larvae.
    Filoni S; Bernardini S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2006 Jul; 305(7):538-50. PubMed ID: 16703619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast.
    Zakian VA
    Proc Natl Acad Sci U S A; 1981 May; 78(5):3128-32. PubMed ID: 7019920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA sequences for typical ribosomal gene spacers from Xenopus laevis and Xenopus borealis.
    Labhart P; Reeder RH
    Nucleic Acids Res; 1987 Apr; 15(8):3623-4. PubMed ID: 3453114
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of yolk DNA from Xenopus laevis oocytes ovulated in vitro.
    Hanocq F; Kirsch-Volders M; Hanocq-Quertier J; Baltus E; Steinert G
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1322-6. PubMed ID: 4113867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positioning of the A . T-rich regions in rat mitochondrial DNA by electron microscopy and analysis of the hysteresis of denaturation.
    Yonekawa H; Gotoh O; Motohashi J; Hayashi JI; Tagashira Y
    Biochim Biophys Acta; 1978 Dec; 521(2):510-9. PubMed ID: 737180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human 18 S ribosomal RNA sequence inferred from DNA sequence. Variations in 18 S sequences and secondary modification patterns between vertebrates.
    McCallum FS; Maden BE
    Biochem J; 1985 Dec; 232(3):725-33. PubMed ID: 4091818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels.
    Cristofori-Armstrong B; Soh MS; Talwar S; Brown DL; Griffin JD; Dekan Z; Stow JL; King GF; Lynch JW; Rash LD
    Sci Rep; 2015 Oct; 5():14763. PubMed ID: 26440210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).
    Schmid M; Steinlein C
    Cytogenet Genome Res; 2015; 145(3-4):201-17. PubMed ID: 26112092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.