These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4865475)

  • 1. The activity and specificity of the proline permease in wild-type and analogue-resistant strains of Escherichia coli.
    Tristram H; Neale S
    J Gen Microbiol; 1968 Jan; 50(1):121-37. PubMed ID: 4865475
    [No Abstract]   [Full Text] [Related]  

  • 2. Aspartate 55 in the Na+/proline permease of Escherichia coli is essential for Na+-coupled proline uptake.
    Quick M; Jung H
    Biochemistry; 1997 Apr; 36(15):4631-6. PubMed ID: 9109673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli.
    Berger EA; Heppel LA
    J Biol Chem; 1974 Dec; 249(24):7747-55. PubMed ID: 4279250
    [No Abstract]   [Full Text] [Related]  

  • 4. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease.
    Grenson M; Hou C; Crabeel M
    J Bacteriol; 1970 Sep; 103(3):770-7. PubMed ID: 5474888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of the Escherichia coli proline transport system.
    Rowland I; Tristram H
    J Bacteriol; 1975 Sep; 123(3):871-7. PubMed ID: 1099081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyridine carboxylic acids as inhibitors and substrates of the Escherichia coli gab permease encoded by gabP.
    King SC; Fleming SR; Brechtel C
    J Bacteriol; 1995 Sep; 177(18):5381-2. PubMed ID: 7665533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional differences between heme permeases: Serratia marcescens HemTUV permease exhibits a narrower substrate specificity (restricted to heme) than the Escherichia coli DppABCDF peptide-heme permease.
    Létoffé S; Delepelaire P; Wandersman C
    J Bacteriol; 2008 Mar; 190(6):1866-70. PubMed ID: 18178744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of the proline permease of Escherichia coli.
    Rowland I; Tristram H
    Biochem J; 1972 Apr; 127(3):70P. PubMed ID: 4561783
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of bacterial growth by cis- and trans-3,4-methano-L-prolines: mechanism of toxicity.
    Rowland I; Tristram H
    Chem Biol Interact; 1972 May; 4(6):377-88. PubMed ID: 4555386
    [No Abstract]   [Full Text] [Related]  

  • 10. Monoclonal antibody 4B1 alters the pKa of a carboxylic acid at position 325 (helix X) of the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Aug; 35(31):10166-71. PubMed ID: 8756481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of amino acid transport-negative mutants of Pseudomonas aeruginosa and cells with repressed transport activity.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Apr; 98(1):116-23. PubMed ID: 4977687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of monoclonal antibody 4B1 to homologs of the lactose permease of Escherichia coli.
    Sun J; Frillingos S; Kaback HR
    Protein Sci; 1997 Jul; 6(7):1503-10. PubMed ID: 9232651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off.
    Frillingos S; Gonzalez A; Kaback HR
    Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulphate permease of Escherichia coli K12.
    Karbonowska H; Wiater A; Hulanicka D
    Acta Biochim Pol; 1977; 24(4):329-34. PubMed ID: 345700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of 3,4-dehydro-D-proline and other D-amino acid analogues by D-alanine dehydrogenase from Escherichia coli.
    Deutch CE
    FEMS Microbiol Lett; 2004 Sep; 238(2):383-9. PubMed ID: 15358424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unidirectional reconstitution and characterization of purified Na+/proline transporter of Escherichia coli.
    Jung H; Tebbe S; Schmid R; Jung K
    Biochemistry; 1998 Aug; 37(31):11083-8. PubMed ID: 9693004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral amino acid transport in Pseudomonas fluorescens.
    Hechtman P; Scriver CR
    J Bacteriol; 1970 Nov; 104(2):857-63. PubMed ID: 5489439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modification of the membrane structure of Escherichia coli B cells infected with different mutants of rII phage T4B].
    Boĭkov PIa; Gumanov LL
    Biokhimiia; 1972; 37(1):142-5. PubMed ID: 4552962
    [No Abstract]   [Full Text] [Related]  

  • 20. Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides.
    Schaefler S
    J Bacteriol; 1967 Jan; 93(1):254-63. PubMed ID: 5335892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.