These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 486565)
21. [Heat generation, accumulation and dissipation in clusters of the aggregated insects]. Es'kov EK; Toboev VA Zh Obshch Biol; 2009; 70(2):110-20. PubMed ID: 19425349 [TBL] [Abstract][Full Text] [Related]
22. Thermoregulation and energy metabolism in the neonatal pig. Le Dividich J; Noblet J Ann Rech Vet; 1983; 14(4):375-81. PubMed ID: 6677178 [TBL] [Abstract][Full Text] [Related]
23. [Use of a mathematical model to assess cutaneous blood flow and heat loss during a thermoregulatory reaction]. Bedrov IaA; Gekhman BI Fiziol Zh SSSR Im I M Sechenova; 1975 Nov; 61(11):1723-9. PubMed ID: 1201799 [TBL] [Abstract][Full Text] [Related]
24. Mathematical model of man's tolerance to cold using morphological factors. Timbal J; Loncle M; Boutelier C Aviat Space Environ Med; 1976 Sep; 47(9):958-64. PubMed ID: 971175 [TBL] [Abstract][Full Text] [Related]
25. An application of randomization for detecting evidence of thermoregulation in timber rattlesnakes (Crotalus horridus) from northwest Arkansas. Wills CA; Beaupre SJ Physiol Biochem Zool; 2000; 73(3):325-34. PubMed ID: 10893172 [TBL] [Abstract][Full Text] [Related]
26. Mathematical model of regulation of oxidative phosphorylation in intact mitochondria. Bohnensack R; Kunz W Acta Biol Med Ger; 1978; 37(1):97-112. PubMed ID: 706931 [TBL] [Abstract][Full Text] [Related]
27. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Doona CJ; Feeherry FE; Ross EW Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689 [TBL] [Abstract][Full Text] [Related]
28. [Heat exchange between human body and environment (theoretical bases of physiological measurement and evaluation)]. Pezzagno G G Ital Med Lav Ergon; 1999; 21(3):159-205. PubMed ID: 10771731 [TBL] [Abstract][Full Text] [Related]
29. [Efficiency of the physiological changes of heat conduction and heat mass transfer in human skin during thermoregulation]. Ivanov KP; Ermakova II Fiziol Zh SSSR Im I M Sechenova; 1983 Feb; 69(2):247-51. PubMed ID: 6840348 [No Abstract] [Full Text] [Related]
30. The role of dynamic modelling in understanding the microbial contribution to rumen function. Dijkstra J; Mills JA; France J Nutr Res Rev; 2002 Jun; 15(1):67-90. PubMed ID: 19087399 [TBL] [Abstract][Full Text] [Related]
31. Rational temperature indices of man's thermal environment and their use with a 2-node model of his temperature regulation. Gagge AP Fed Proc; 1973 May; 32(5):1572-82. PubMed ID: 4705203 [No Abstract] [Full Text] [Related]
32. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio. Bohnensack R Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276 [TBL] [Abstract][Full Text] [Related]
33. Modeling thermal responses in human subjects following extended exposure to radiofrequency energy. Foster KR; Adair ER Biomed Eng Online; 2004 Feb; 3():4. PubMed ID: 14989757 [TBL] [Abstract][Full Text] [Related]
34. A state space model of local energy exchange and circulatory control. Füzes I Acta Physiol Hung; 1990; 76(1):27-48. PubMed ID: 2088010 [TBL] [Abstract][Full Text] [Related]
35. [Kinetic model and mechanism of regulation of a multienzyme system of thromboxane synthesis]. Varfolomeev SD; Gachok VP; Mevkh AT Mol Biol (Mosk); 1985; 19(6):1648-60. PubMed ID: 3935913 [TBL] [Abstract][Full Text] [Related]
36. [Characteristics of the heat exchange of the body with the environment (research on a heat physics model)]. Rumiantsev GV; Morozov GB Fiziol Zh SSSR Im I M Sechenova; 1988 Sep; 74(9):1321-6. PubMed ID: 3215337 [TBL] [Abstract][Full Text] [Related]
37. A theory of drug tolerance and dependence II: the mathematical model. Peper A J Theor Biol; 2004 Aug; 229(4):491-500. PubMed ID: 15246786 [TBL] [Abstract][Full Text] [Related]
38. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems. Stephani A; Heinrich R Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953 [TBL] [Abstract][Full Text] [Related]
39. Development and application of a mathematical model of human thermoregulation. Stolwijk JA; Nadel ER; Wenger CB; Roberts MF Arch Sci Physiol (Paris); 1973; 27(3):303-10. PubMed ID: 4807388 [No Abstract] [Full Text] [Related]
40. A transient two-dimensional model of thermoregulation in a human subject. Smith P; Twizell EH IMA J Math Appl Med Biol; 1985; 2(3):161-81. PubMed ID: 3870984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]