These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 4866443)

  • 1. Effect of trinucleoside diphosphates containing inosine at the 3'-end upon the binding of aminoacyl-tRNA to ribosomes.
    Sekiya T; Yoshida M; Ukita T
    Biochim Biophys Acta; 1967 Dec; 149(2):610-2. PubMed ID: 4866443
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of some triribonucleoside diphosphates containing inosine on the binding of [14C]aminoacyl-tRNA to ribosomes.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1967 Nov; 149(1):246-52. PubMed ID: 4867551
    [No Abstract]   [Full Text] [Related]  

  • 3. The modification of nucleosides and nucleotides. X. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA.
    Yoshida M; Kaziro Y; Ukita T
    Biochim Biophys Acta; 1968 Oct; 166(3):646-55. PubMed ID: 4301909
    [No Abstract]   [Full Text] [Related]  

  • 4. Fractionation of serine transfer ribonucleic acids from Escherichia coli and their coding properties.
    Ishikura H; Nishimura S
    Biochim Biophys Acta; 1968 Jan; 155(1):72-81. PubMed ID: 4869455
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis and coding properties of 8-azaguanosinecontaining triribonucleoside diphosphates.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1968 Jun; 161(1):147-55. PubMed ID: 5661366
    [No Abstract]   [Full Text] [Related]  

  • 6. The modification of nucleosides and nucleotides. IX. Inactivation of coding response of yeast tRNA containing inosine residue by cyanoethylation.
    Yoshida M; Furuichi Y; Kaziro Y; Ukita T
    Biochim Biophys Acta; 1968 Oct; 166(3):636-45. PubMed ID: 4881143
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of 5'-terminal phosphate on the recognition of some dinucleoside phosphates by [14C]aminoacyl-tRNA.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1968 Apr; 157(2):439-42. PubMed ID: 5649917
    [No Abstract]   [Full Text] [Related]  

  • 8. EFFECT OF BROMINATION ON THE BIOLOGICAL ACTIVITIES OF TRANSFER RNA OF ESCHERICHIA COLI.
    YU CT; ZAMECNIK PC
    Science; 1964 May; 144(3620):856-9. PubMed ID: 14149400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective loss of binding of aminoacyl-tRNA by ribosomes treated with diethanoldisulfide.
    Furano AV
    Biochim Biophys Acta; 1968 Jun; 161(1):255-8. PubMed ID: 4873557
    [No Abstract]   [Full Text] [Related]  

  • 10. Possible anticodon sequences of tRNA His , tRNA Asm , and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first postion of the anticondons of these transfer ribonucleic acids.
    Harada F; Nishimura S
    Biochemistry; 1972 Jan; 11(2):301-8. PubMed ID: 4550561
    [No Abstract]   [Full Text] [Related]  

  • 11. Formation and properties of an aminoacyl-tRNA-GTP-protein complex.
    Ravel JM; Shorey RL
    J Cell Physiol; 1969 Oct; 74(2):Suppl 1:103+. PubMed ID: 4902815
    [No Abstract]   [Full Text] [Related]  

  • 12. Cleavage of Escherichia coli tyrosine tRNA-2 in the S-region and its effects on the structure and function of the reconstituted molecules.
    Seno T; Nishimura S
    Biochim Biophys Acta; 1971 Jan; 228(1):141-52. PubMed ID: 4926027
    [No Abstract]   [Full Text] [Related]  

  • 13. Binding of valine tRNA, fragments to 70-S, 50-S and 30-S ribosomal particles.
    Mirzabekov AD; Grünberger D; Bayev AA
    Biochim Biophys Acta; 1968 Aug; 166(1):68-74. PubMed ID: 4880560
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymatic hydrolysis of peptidyl-tRNA.
    de Groot N; Panet A; Lapidot Y
    Biochem Biophys Res Commun; 1968 Apr; 31(1):37-42. PubMed ID: 4869944
    [No Abstract]   [Full Text] [Related]  

  • 15. CHANGES IN SEDIMENTATION PROPERTIES OF RIBOSOMAL RIBONUCLEIC ACIDS DURING THE COURSE OF RIBOSOME FORMATION IN ESCHERICHIA COLI.
    KONO M; OTAKA E; OSAWA S
    Biochim Biophys Acta; 1964 Dec; 91():612-8. PubMed ID: 14262448
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of action of negamycin in Escherichia coli K12. II. Miscoding activity in polypeptide synthesis directed by synthetic polynucleotide.
    Mizuno S; Nitta K; Umezawa H
    Jpn J Antibiot; 1970 Dec; 23(6):589-94. PubMed ID: 4923583
    [No Abstract]   [Full Text] [Related]  

  • 17. The binding of aminoacyl-sRNA's to ribosomes stimulated by block oligonucleotides.
    Thach RE; Sundararajan TA
    Proc Natl Acad Sci U S A; 1965 May; 53(5):1021-8. PubMed ID: 5330354
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of cyanoethylation on codon recognition of yeast tRNA containing inosine.
    Yoshida M; Furuichi Y; Ukita T; Kaziro Y
    Biochim Biophys Acta; 1967 Nov; 149(1):308-10. PubMed ID: 5582751
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of polymers and trinucleoside diphosphates containing 8-azaguanine upon the binding of [14C]valine-sRNA to ribosomes.
    Grünberger D; Meissner L; Holý A; Sorm F
    Biochim Biophys Acta; 1966 May; 119(2):432-3. PubMed ID: 5335949
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanisms in protein synthesis. IV. Further evidence for two different ribosomal sites, one binding formylmethionyl-tRNA, the other methionyl- and other aminoacyl-tRNA's.
    Matthaei H; Voigt HP
    Biochem Biophys Res Commun; 1967 Sep; 28(5):730-9. PubMed ID: 4861254
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.