These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4866536)

  • 1. Stimulative vaporization of phenylmercuric acetate by mercury-resistant bacteria.
    Tonomura K; Maeda K; Futai F; Nakagami T; Yamada M
    Nature; 1968 Feb; 217(5129):644-6. PubMed ID: 4866536
    [No Abstract]   [Full Text] [Related]  

  • 2. Biodegradation of phenylmercuric acetate by mercury-resistant bacteria.
    Nelson JD; Blair W; Brinckman FE; Colwell RR; Iverson WP
    Appl Microbiol; 1973 Sep; 26(3):321-6. PubMed ID: 4584577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylmercuric acetate: metabolic conversion by microorganisms.
    Matsumura F; Gotoh Y; Boush GM
    Science; 1971 Jul; 173(3991):49-51. PubMed ID: 4932261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of mercuric chloride resistance in microorganisms. II. NADPH-dependent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain of Escherichia coli.
    Komura I; Funaba T; Izaki K
    J Biochem; 1971 Dec; 70(6):895-901. PubMed ID: 4401341
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli.
    Komura I; Izaki K
    J Biochem; 1971 Dec; 70(6):885-93. PubMed ID: 4947308
    [No Abstract]   [Full Text] [Related]  

  • 6. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
    Summers AO; Lewis E
    J Bacteriol; 1973 Feb; 113(2):1070-2. PubMed ID: 4632313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of methylmercury in a terrestrial environment.
    Beckert WF; Moghissi AA; Au FH; Bretthauer EW; McFarlane JC
    Nature; 1974 Jun; 249(458):674-5. PubMed ID: 4833809
    [No Abstract]   [Full Text] [Related]  

  • 8. The reductive decomposition of organic mercurials by cell-free extract of a mercury-resistant pseudomonad.
    Tonomura K; Kanzaki F
    Biochim Biophys Acta; 1969 Jun; 184(1):227-9. PubMed ID: 4389330
    [No Abstract]   [Full Text] [Related]  

  • 9. Cytochrome c involved in the reductive decomposition of organic mercurials. Purification of cytochrome c-I from mercury-resistant Pseudomonas and reactivity of cytochromes c from various kinds of bacteria.
    Furukawa K; Tonomura K
    Biochim Biophys Acta; 1973 Dec; 325(3):413-23. PubMed ID: 4360253
    [No Abstract]   [Full Text] [Related]  

  • 10. Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria.
    Radford AJ; Oliver J; Kelly WJ; Reanney DC
    J Bacteriol; 1981 Sep; 147(3):1110-2. PubMed ID: 6268601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury resistance in a plasmid-bearing strain of Escherichia coli.
    Summers AO; Silver S
    J Bacteriol; 1972 Dec; 112(3):1228-36. PubMed ID: 4565536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free mercury(II)-reducing activity in a plasmid-bearing strain of Escherichia coli.
    Summers AO; Sugarman LI
    J Bacteriol; 1974 Jul; 119(1):242-9. PubMed ID: 4600700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination, tissue accumulation, and cellular incorporation of mercury in rats receiving an oral dose of 203Hg-labeled phenylmercuric acetate and mercuric acetate.
    Ellis RW; Fang SC
    Toxicol Appl Pharmacol; 1967 Jul; 11(1):104-13. PubMed ID: 6056148
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression in Escherichia coli of chromosomal mercury resistance genes from a Bacillus sp.
    Wang Y; Mahler I; Levinson HS; Halvorson HO
    J Bacteriol; 1987 Oct; 169(10):4848-51. PubMed ID: 2820946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental study of the distribution of phenylmercuric acetate administered into the vagina and its influence on the embryo. 1. Absorption into the blood and excretion].
    Shimizu M
    Nihon Sanka Fujinka Gakkai Zasshi; 1970 Apr; 22(4):350-8. PubMed ID: 5464770
    [No Abstract]   [Full Text] [Related]  

  • 17. Uptake and biotransformation of phenylmercuric acetate by aquatic organisms.
    Fang SC
    Arch Environ Contam Toxicol; 1973 Feb; 1(1):18-26. PubMed ID: 4775397
    [No Abstract]   [Full Text] [Related]  

  • 18. Volatilisation of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria.
    Schottel J; Mandal A; Clark D; Silver S; Hedges RW
    Nature; 1974 Sep; 251(5473):335-7. PubMed ID: 4610398
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative study of uptake and cellular distribution of Hg203-labeled phenyl-mercuric acetate and mercuric acetate by pea roots.
    Rao AV; Fallin E; Fang SC
    Plant Physiol; 1966 Mar; 41(3):443-6. PubMed ID: 5906377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylmercuric acetate biodegradation by environmental strains of Pseudomonas species.
    Mirgain I; Werneburg B; Harf C; Monteil H
    Res Microbiol; 1989; 140(9):695-707. PubMed ID: 2626597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.