These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 4866983)
1. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983 [No Abstract] [Full Text] [Related]
2. Genetic analysis of carbohydrate transport-deficient mutants of Salmonella typhimurium. Levinthal M; Simoni RD J Bacteriol; 1969 Jan; 97(1):250-5. PubMed ID: 4884816 [TBL] [Abstract][Full Text] [Related]
3. Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system. Saier MH; Roseman S J Biol Chem; 1972 Feb; 247(3):972-5. PubMed ID: 4550766 [No Abstract] [Full Text] [Related]
4. Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system. Tanaka S; Lin EC Proc Natl Acad Sci U S A; 1967 Apr; 57(4):913-9. PubMed ID: 5231354 [No Abstract] [Full Text] [Related]
5. Characterization of constitutive galactose permease mutants in Salmonella typhimurium. Saier MH; Bromberg FG; Roseman S J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699 [TBL] [Abstract][Full Text] [Related]
6. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system. Saier MH; Young WS; Roseman S J Biol Chem; 1971 Sep; 246(18):5838-40. PubMed ID: 4938041 [No Abstract] [Full Text] [Related]
7. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569 [TBL] [Abstract][Full Text] [Related]
8. The relative permeability of lysosomes from Tetrahymena pyriformis to carbohydrates, lactate and the cryoprotective nonelectrolytes glycerol and dimethylsulphoxide. Lee D Biochim Biophys Acta; 1970 Sep; 211(3):550-4. PubMed ID: 5456981 [No Abstract] [Full Text] [Related]
9. Involvement of the phosphotransferase system in galactose transport in Salmonella typhimurium. Postma PW FEBS Lett; 1976 Jan; 61(1):49-53. PubMed ID: 1107070 [No Abstract] [Full Text] [Related]
10. Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants. Wang RJ; Morse ML J Mol Biol; 1968 Feb; 32(1):59-66. PubMed ID: 4868120 [No Abstract] [Full Text] [Related]
11. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Ullrich KJ; Rumrich G; Klöss S Pflugers Arch; 1974; 351(1):35-48. PubMed ID: 4472834 [No Abstract] [Full Text] [Related]
12. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Gay P; Cordier P; Marquet M; Delobbe A Mol Gen Genet; 1973 Mar; 121(4):355-68. PubMed ID: 4632931 [No Abstract] [Full Text] [Related]
13. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Roseman S J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370 [TBL] [Abstract][Full Text] [Related]
14. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. Kaback HR J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728 [No Abstract] [Full Text] [Related]
15. Interaction of maltose transport with the transport of glucose and galactosides. McKinstry G; Koch AL J Bacteriol; 1972 Jan; 109(1):455-8. PubMed ID: 4550675 [TBL] [Abstract][Full Text] [Related]
16. Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate: mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium. Saier MH; Newman MJ J Biol Chem; 1976 Jun; 251(12):3834-7. PubMed ID: 819432 [TBL] [Abstract][Full Text] [Related]
17. A Mannose Family Phosphotransferase System Permease and Associated Enzymes Are Required for Utilization of Fructoselysine and Glucoselysine in Salmonella enterica Serovar Typhimurium. Miller KA; Phillips RS; Kilgore PB; Smith GL; Hoover TR J Bacteriol; 2015 Sep; 197(17):2831-9. PubMed ID: 26100043 [TBL] [Abstract][Full Text] [Related]
18. Fine control of sugar uptake by Escherichia coli. Kornberg HL Symp Soc Exp Biol; 1973; 27():175-93. PubMed ID: 4588142 [No Abstract] [Full Text] [Related]
19. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Cordaro C Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682 [No Abstract] [Full Text] [Related]
20. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Saier MH; Feucht BU; Hofstadter LJ J Biol Chem; 1976 Feb; 251(3):883-92. PubMed ID: 765335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]