These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 4868186)

  • 1. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus.
    Winegrad S
    J Gen Physiol; 1968 Jan; 51(1):65-83. PubMed ID: 4868186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intracellular site of calcium activaton of contraction in frog skeletal muscle.
    Winegrad S
    J Gen Physiol; 1970 Jan; 55(1):77-88. PubMed ID: 5410491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible role of the transverse tubules in accumulating calcium released from the terminal cisternae by stimulation and drugs.
    Bianchi CP; Narayan S
    Can J Physiol Pharmacol; 1982 Apr; 60(4):503-7. PubMed ID: 6286071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE.
    WINEGRAD S
    J Gen Physiol; 1965 Jan; 48(3):455-79. PubMed ID: 14284779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The location of muscle calcium with respect to the myofibrils.
    Winegrad S
    J Gen Physiol; 1965 Jul; 48(6):997-1002. PubMed ID: 5855513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)].
    Dauber W
    Z Mikrosk Anat Forsch; 1979; 93(3):512-36. PubMed ID: 316237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular distribution of calcium in cardiac muscles studied by electron microscope autoradiography.
    Ishida A; Mashima H; Tanaka S
    Jpn J Physiol; 1979; 29(1):37-48. PubMed ID: 449121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration of horseradish peroxidase into the terminal cisternae of frog skeletal muscle fibers and blockade of caffeine contracture by Ca ++ depletion.
    Rubio R; Sperelakis N
    Z Zellforsch Mikrosk Anat; 1972; 124(1):57-71. PubMed ID: 4536808
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of previous activity on the energetics of activation in frog skeletal muscle.
    Rall JA
    J Gen Physiol; 1980 Jun; 75(6):617-31. PubMed ID: 6967106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.
    Peachey LD
    J Cell Biol; 1965 Jun; 25(3):Suppl:209-31. PubMed ID: 5840799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of muscle length on 45Ca efflux in resting and contracting skeletal muscle.
    Frank JS; Winegrad S
    Am J Physiol; 1976 Aug; 231(2):555-9. PubMed ID: 1085572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium and magnesium contents and volume of the terminal cisternae in caffeine-treated skeletal muscle.
    Yoshioka T; Somlyo AP
    J Cell Biol; 1984 Aug; 99(2):558-68. PubMed ID: 6611338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.
    Heuser JE; Reese TS
    J Cell Biol; 1973 May; 57(2):315-44. PubMed ID: 4348786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural cation precipitation in frog skeletal muscle. I. Localization of pyroantimonate precipitate at rest and in tetanus.
    Yarom R; Meiri U
    J Ultrastruct Res; 1972 Jun; 39(5):430-42. PubMed ID: 4556319
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects and subcellular distribution of magnesium in smooth and striated muscle.
    Somlyo AP; Somlyo AV
    Fed Proc; 1981 Oct; 40(12):2667-71. PubMed ID: 7026293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of chlorpromazine, prenylamine, imipramine and reserpine on calcium exchange and muscle function (m. rectus and sartorius of frog)].
    Balzer H; Hellenbrecht D
    Naunyn Schmiedebergs Arch Pharmakol; 1969; 264(2):129-46. PubMed ID: 4241675
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of hypertonicity on resting and contracting frog skeletal muscles.
    Homsher E; Briggs FN; Wise RM
    Am J Physiol; 1974 Apr; 226(4):855-63. PubMed ID: 4545047
    [No Abstract]   [Full Text] [Related]  

  • 18. Nickel substitution for calcium in excitation-contraction coupling of skeletal muscle.
    Fischman DA; Swan RC
    J Gen Physiol; 1967 Jul; 50(6):1709-28. PubMed ID: 4227212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of calcium diffusion, binding and membrane transport in the sarcomere of frog skeletal muscle.
    HollĂ˝ M; Poledna J
    Gen Physiol Biophys; 1989 Dec; 8(6):539-53. PubMed ID: 2533126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of muscular contraction. I. Total energy output and phosphoryl creatine splitting in isovelocity and isotonic tetani of frog sartorius.
    Chaplain RA; Frommelt B
    Pflugers Arch; 1972; 334(2):167-80. PubMed ID: 4538374
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.