These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 4868352)

  • 21. Properties of a mutant of Escherichia coli lacking purine nucleoside phosphorylase.
    Ahmad SI; Barth PT; Pritchard RH
    Biochim Biophys Acta; 1968 Jul; 161(2):581-3. PubMed ID: 4875425
    [No Abstract]   [Full Text] [Related]  

  • 22. Mutants constitutive for nucleoside-catabolizing enzymes in Escherichia coli K12. Isolation, charactrization and mapping.
    Munch-Petersen A; Nygaard P; Hammer-Jespersen K; Fiil N
    Eur J Biochem; 1972 May; 27(2):208-15. PubMed ID: 4559263
    [No Abstract]   [Full Text] [Related]  

  • 23. [Studies on the mechanism of inhibitory effect of nucleic acid bases and nucleosides on thymine-requiring mutant of Escherichia coli B].
    Akiyoshi H
    Igaku Kenkyu; 1967 Dec; 37(7):778-86. PubMed ID: 4871088
    [No Abstract]   [Full Text] [Related]  

  • 24. Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon.
    Schuch R; Garibian A; Saxild HH; Piggot PJ; Nygaard P
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2957-66. PubMed ID: 10537218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphoglucomutase mutants of Escherichia coli K-12.
    Adhya S; Schwartz M
    J Bacteriol; 1971 Nov; 108(2):621-6. PubMed ID: 4942754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Regulator mutants for the synthesis of a 2d purine nucleoside phosphorylase in Escherichia coli K-12. II. Mapping and study of the dominance of pndR mutations].
    Kocharian AM; Melkumian MA; Kocharian ShM
    Genetika; 1985 Feb; 21(2):220-8. PubMed ID: 3921429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turnover of the deoxyribonucleoside triphosphates in Escherichia coli 15 T during thymine starvation.
    Neuhard J; Thomassen E
    Eur J Biochem; 1971 May; 20(1):36-43. PubMed ID: 4931186
    [No Abstract]   [Full Text] [Related]  

  • 28. A showdomycin-resistant mutant of Escherichia coli K-12 with altered nucleoside transport character.
    Komatsu Y; Tanaka K
    Biochim Biophys Acta; 1972 Nov; 288(2):390-403. PubMed ID: 4563236
    [No Abstract]   [Full Text] [Related]  

  • 29. Control of deoxynucleotide biosynthesis in Escherichia coli. II. Effect of deoxythymidylate on the biosynthesis of both deoxynucleotides and ribonucleotide reductase.
    Cannon WD; Breitman TR
    Arch Biochem Biophys; 1968 Sep; 127(1):534-42. PubMed ID: 4880550
    [No Abstract]   [Full Text] [Related]  

  • 30. Incorporation of deoxyribonucleoside diphosphates into DNA-like polydeoxyribonucleotides: experiments with an enzyme and toluene-treated cells from wild-type Escherichia coli.
    Hsieh WT
    J Mol Biol; 1972 Apr; 66(1):195-9. PubMed ID: 4557197
    [No Abstract]   [Full Text] [Related]  

  • 31. Genetic analysis of thymidine-resistant and low-thymine-requiring mutants of Escherichia coli K-12 induced by bacteriophage Mu-1.
    Buxton RS
    J Bacteriol; 1975 Feb; 121(2):475-84. PubMed ID: 1089630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the catabolism of deoxyribonucleosides in cells and cell extracts of Escherichia coli.
    Munch-Petersen A
    Eur J Biochem; 1968 Nov; 6(3):432-42. PubMed ID: 4973225
    [No Abstract]   [Full Text] [Related]  

  • 33. Thymine and thymidine uptake by Haemophilus influenzae and the labeling of deoxyribonucleic acid.
    Carmody JM; Herriott RM
    J Bacteriol; 1970 Feb; 101(2):525-30. PubMed ID: 5308772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of de novo purine biosynthesis and interconversion by 6-methylpurine in Escherichia coli.
    Benson CE; Love SH; Remy CN
    J Bacteriol; 1970 Mar; 101(3):872-80. PubMed ID: 4908785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes.
    Hochstadt-Ozer J
    J Biol Chem; 1972 Apr; 247(8):2419-26. PubMed ID: 4336374
    [No Abstract]   [Full Text] [Related]  

  • 36. Mutants of T2gt with altered DNA methylase activity: relation to restriction by prophage P1.
    Revel HR; Hattman SM
    Virology; 1971 Aug; 45(2):484-95. PubMed ID: 4937994
    [No Abstract]   [Full Text] [Related]  

  • 37. A possible recognition of ribonucleotides by DNA dependent RNA polymerase of E. coli.
    Asano S; Kurashina Y; Anraku Y; Mizuno D
    J Biochem; 1971 Jul; 70(1):9-20. PubMed ID: 4934990
    [No Abstract]   [Full Text] [Related]  

  • 38. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli.
    Wilkins AS
    J Bacteriol; 1972 May; 110(2):616-23. PubMed ID: 4553839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uridine and uracil transport in Escherichia coli and transport-deficient mutants.
    Roy-Burman S; Visser DW
    Biochim Biophys Acta; 1981 Aug; 646(2):309-19. PubMed ID: 7028116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purine nucleoside phosphorylase: kinetics, mechanism, and specificity.
    Krenitsky TA
    Mol Pharmacol; 1967 Nov; 3(6):526-36. PubMed ID: 6059869
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.