BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 4869224)

  • 1. Characterization of the ribonucleic acid synthesized during amino acid-deprivation of a stringent auxotroph of Escherichia coli.
    Sarkar S; Moldave K
    J Mol Biol; 1968 Apr; 33(1):213-24. PubMed ID: 4869224
    [No Abstract]   [Full Text] [Related]  

  • 2. [Synthesis of stable RNA by a stringent Escherichia coli strain during specific amino acid deprivation].
    Galibert F; Eladari ME; Larsen CJ; Boiron M
    Eur J Biochem; 1970 Apr; 13(2):273-80. PubMed ID: 4909305
    [No Abstract]   [Full Text] [Related]  

  • 3. Coordinate control of ribonucleic acid synthesis during uracil deprivation.
    Lazzarini RA; Nakata K; Winslow RM
    J Biol Chem; 1969 Jun; 244(11):3092-100. PubMed ID: 4890765
    [No Abstract]   [Full Text] [Related]  

  • 4. Formation of polysomes in T2-infected Escherichia coli during inhibition of protein synthesis.
    Hauge JG
    Eur J Biochem; 1968 May; 4(4):431-6. PubMed ID: 4873245
    [No Abstract]   [Full Text] [Related]  

  • 5. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains.
    Cashel M
    J Biol Chem; 1969 Jun; 244(12):3133-41. PubMed ID: 4893338
    [No Abstract]   [Full Text] [Related]  

  • 6. Stabilization and breakdown of Escherichia coli messenger ribonucleic acid in the presence of chloramphenicol.
    Fry M; Israeli-Reches M; Artman M
    Biochemistry; 1972 Aug; 11(16):3054-9. PubMed ID: 4557518
    [No Abstract]   [Full Text] [Related]  

  • 7. Ribonucleic acid synthesis in T2-infected Escherichia coli during "stringent" control.
    Sharp K; Green MH
    J Bacteriol; 1968 Jul; 96(1):111-6. PubMed ID: 4874300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of RNA synthesis in Escherichia coli. I. Amino acid dependence of the synthesis of the substrates of RNA polymerase.
    Cashel M; Gallant J
    J Mol Biol; 1968 Jul; 34(2):317-30. PubMed ID: 4938549
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of chloramphenicol on the synthesis and stability of ribonucleic acid in Bacillus subtilis.
    Lazzarini RA; Santangelo E
    J Bacteriol; 1968 Apr; 95(4):1212-20. PubMed ID: 4967191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Maturation and integration of 5 S RNA during the biosynthesis of ribosomal 50 S particles].
    Galibert F; Eladari ME; Hampe A; Boiron M
    Eur J Biochem; 1970 Apr; 13(2):281-8. PubMed ID: 4191595
    [No Abstract]   [Full Text] [Related]  

  • 11. The control of ribonucleic acid synthesis in Escherichia coli. II. Stringent control of energy metabolism.
    Irr J; Gallant J
    J Biol Chem; 1969 Apr; 244(8):2233-9. PubMed ID: 4889467
    [No Abstract]   [Full Text] [Related]  

  • 12. On the mechanism of amino acid control of ribonucleic acid biosynthesis.
    Gallant J; Cashel M
    J Mol Biol; 1967 May; 25(3):545-53. PubMed ID: 5340696
    [No Abstract]   [Full Text] [Related]  

  • 13. Ribosomal proteins and ribonucleic acids of ribosome maturation mutants of Escherichia coli.
    Bryant RE; Fujisawa T; Sypherd PS
    Biochemistry; 1974 May; 13(10):2110-4. PubMed ID: 4597071
    [No Abstract]   [Full Text] [Related]  

  • 14. rna synthesis in t4 infected Escherichia coli during amino acid starvation.
    Donini P; Edlin G
    Virology; 1972 Oct; 50(1):273-6. PubMed ID: 4563040
    [No Abstract]   [Full Text] [Related]  

  • 15. A naturally occurring 43 s ribosomal precursor particle in Escherichia coli: nature and ribonucleic acid composition.
    Forget BG; Varricchio F
    J Mol Biol; 1970 Mar; 48(3):409-19. PubMed ID: 4911809
    [No Abstract]   [Full Text] [Related]  

  • 16. A consequence of the rel gene during a glucose to lactate downshift in Escherichia coli. The rates of ribonucleic acid synthesis.
    Winslow RM
    J Biol Chem; 1971 Aug; 246(15):4872-7. PubMed ID: 4934994
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of the ribosome in stringent control of bacterial RNA synthesis.
    de Boer HA; Raué HA; Ab G; Gruber M
    Biochim Biophys Acta; 1971 Aug; 246(1):157-60. PubMed ID: 4941746
    [No Abstract]   [Full Text] [Related]  

  • 18. 5 S RNA and the assembly of bacterial ribosomes.
    Monier R; Feunteun J; Forget B; Jordan B; Reynier M; Varricchio F
    Cold Spring Harb Symp Quant Biol; 1969; 34():139-48. PubMed ID: 4909491
    [No Abstract]   [Full Text] [Related]  

  • 19. Dissociation of 5 -S RNA from 50 -S ribosomal subunits of Escherichia coli by phosphate treatment.
    Yogo Y; Fujimoto H; Mizuno D
    Biochim Biophys Acta; 1971 Jul; 240(4):564-74. PubMed ID: 4330819
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies of newly synthesized ribosomal ribonucleic acid of Escherichia coli.
    Fry M; Artman M
    Biochem J; 1969 Nov; 115(2):295-305. PubMed ID: 4907882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.