These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4870166)

  • 21. Effects of irradiation on growth and toxigenicity of Clostridium botulinum types A and B inoculated onto chicken skins.
    Dezfulian M; Bartlett JG
    Appl Environ Microbiol; 1987 Jan; 53(1):201-3. PubMed ID: 3548590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of an enrichment culture procedure for detection of Clostridium botulinum type E in raw and smoked whitefish chubs.
    Pace PJ; Wisniewski HJ; Angelotti R
    Appl Microbiol; 1968 May; 16(5):673-9. PubMed ID: 4872995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Changes in chemical composition of nutrient media during growth and toxin formation of Cl. botulinum type F].
    Perova EV; Ivanova LG
    Zh Mikrobiol Epidemiol Immunobiol; 1971 Apr; 48(4):134-9. PubMed ID: 4934799
    [No Abstract]   [Full Text] [Related]  

  • 24. [Time of toxin appearance in relation to detectable changes in canned meat artificially contaminated with Clostridium botulinum B (preliminary report)].
    Palec W; Mierzejewski J
    Rocz Panstw Zakl Hig; 1981; 32(3):223-7. PubMed ID: 7031828
    [No Abstract]   [Full Text] [Related]  

  • 25. Clostridium botulinum and its importance in fishery products.
    Hobbs G
    Adv Food Res; 1976; 22():135-85. PubMed ID: 790905
    [No Abstract]   [Full Text] [Related]  

  • 26. Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems.
    Roberts TA; Jarvis B
    Soc Appl Bacteriol Symp Ser; 1983; 11():85-95. PubMed ID: 6359448
    [No Abstract]   [Full Text] [Related]  

  • 27. Establishment of a heat inactivation curve for Clostridium botulinum 62A toxin in beef broth.
    Losikoff ME
    Appl Environ Microbiol; 1978 Aug; 36(2):386-8. PubMed ID: 29566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracellular synthesis of Clostridium botulinum type B toxin. I. Demonstration of toxin synthesis and sedimentation studies on toxic products.
    Gerwing J; Morrell RW; Nitz RM
    J Bacteriol; 1968 Jan; 95(1):22-7. PubMed ID: 4866099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures.
    Carlin F; Peck MW
    Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicted and observed growth and toxigenesis by Clostridium botulinum type E in vacuum-packaged fishery product challenge tests.
    Hyytiä E; Hielm S; Mokkila M; Kinnunen A; Korkeala H
    Int J Food Microbiol; 1999 Mar; 47(3):161-9. PubMed ID: 10359486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxin production by Clostridium botulinum types A and B in unpasteurized cured meat products held at 15 and 27 degrees C.
    Shigehisa T; Kozaki S; Sakaguchi G
    Nihon Juigaku Zasshi; 1984 Dec; 46(6):917-20. PubMed ID: 6394862
    [No Abstract]   [Full Text] [Related]  

  • 32. Toxin occurrence time in relation to sensorial changes in meat cans contaminated with Clostridium botulinum type B endospores.
    Palec W
    Acta Microbiol Pol; 1996; 45(1):75-83. PubMed ID: 8795258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The significance of Clostridium botulinum type E in the application of radiation-pasteurization process to Pacific crab meat and flounder. TID-24880.
    Eklund MW; Poysky FT
    TID Rep; 1965 May; ():1-72. PubMed ID: 4902857
    [No Abstract]   [Full Text] [Related]  

  • 34. Symposium on microbial changes in foods. Factors affecting the production of bacterial food poisoning toxins.
    Baird-Parker AC
    J Appl Bacteriol; 1971 Mar; 34(1):181-97. PubMed ID: 4327570
    [No Abstract]   [Full Text] [Related]  

  • 35. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TOXIN PRODUCTION BY CLOSTRIDIUM BOTULINUM, TYPE E, IN VACUUM-PACKED, IRRADIATED FRESH FISH IN RELATION TO CHANGES OF THE ASSOCIATED MICROFLORA.
    ABRAHAMSSON K; DESILVA NN; MOLIN N
    Can J Microbiol; 1965 Jun; 11():523-9. PubMed ID: 14346129
    [No Abstract]   [Full Text] [Related]  

  • 37. Examination of prepared foods in plastic packages for Clostridium botulinum.
    Taclindo C; Nygaard GS; Bodily HL
    Appl Microbiol; 1967 Mar; 15(2):426-30. PubMed ID: 5339843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Food safety objective approach for controlling Clostridium botulinum growth and toxin production in commercially sterile foods.
    Anderson NM; Larkin JW; Cole MB; Skinner GE; Whiting RC; Gorris LG; Rodriguez A; Buchanan R; Stewart CM; Hanlin JH; Keener L; Hall PA
    J Food Prot; 2011 Nov; 74(11):1956-89. PubMed ID: 22054200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probabilistic representation of the exposure of consumers to Clostridium botulinum neurotoxin in a minimally processed potato product.
    Barker GC; Malakar PK; Del Torre M; Stecchini ML; Peck MW
    Int J Food Microbiol; 2005 Apr; 100(1-3):345-57. PubMed ID: 15854717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C.
    Lund BM; Graham AF; George SM
    J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.