BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 487150)

  • 1. The effect of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domains.
    Gall C; McWilliams R; Lynch G
    Brain Res; 1979 Oct; 175(1):37-47. PubMed ID: 487150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated rates of synaptogenesis by "sprouting" afferents in the immature hippocampal formation.
    Gall C; McWilliams R; Lynch G
    J Comp Neurol; 1980 Oct; 193(4):1047-61. PubMed ID: 7430436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal proliferation and synaptogenesis following partial deafferentation: the reinnervation of the inner molecular layer of the dentate gyrus following removal of its commissural afferents.
    McWilliams R; Lynch G
    J Comp Neurol; 1978 Aug; 180(3):581-616. PubMed ID: 659675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways.
    Steward O
    Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new type of lesion-induced synaptogenesis: II. The effect of aging on synaptic turnover in non-denervated zones.
    Hoff SF; Scheff SW; Kwan AY; Cotman CW
    Brain Res; 1981 Oct; 222(1):15-27. PubMed ID: 7296261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new type of lesion-induced synaptogenesis: I. Synaptic turnover in non-denervated zones of the dentate gyrus in young adult rats.
    Hoff SF; Scheff SW; Kwan AY; Cotman CW
    Brain Res; 1981 Oct; 222(1):1-13. PubMed ID: 7296257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents.
    Peterson GM
    Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The OM series of terminal field-specific monoclonal antibodies demonstrate reinnervation of the adult rat dentate gyrus by embryonic entorhinal transplants.
    Woodhams PL; Kawano H; Raisman G
    Neuroscience; 1992; 46(1):71-82. PubMed ID: 1375711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postlesion axonal growth produces permanent functional connections.
    Lynch G; Deadwyler S; Cotman G
    Science; 1973 Jun; 180(4093):1364-6. PubMed ID: 4350928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histochemical changes in enzymes of energy metabolism in the dentate gyrus accompany deafferentation and synaptic reorganization.
    Borowsky IW; Collins RC
    Neuroscience; 1989; 33(2):253-62. PubMed ID: 2560147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic connections of neuropeptide Y (NPY) immunoreactive neurons in the hilar area of the rat hippocampus.
    Deller T; Leranth C
    J Comp Neurol; 1990 Oct; 300(3):433-47. PubMed ID: 2266195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neurophysiological analysis of commissural projections to dentate gyrus of the rat.
    Deadwyler SA; West JR; Cotman CW; Lynch GS
    J Neurophysiol; 1975 Jan; 38(1):167-84. PubMed ID: 162942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of the associational afferents to the dentate gyrus to simultaneous or sequential elimination of the commissural and entorhinal afferents.
    Peterson GM
    Brain Res Bull; 1987 Aug; 19(2):245-59. PubMed ID: 2444313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorganization of input synapses of parvalbumin-containing neurons in the rat fascia dentata following entorhinal lesion.
    Nitsch R; Bader S; Frotscher M
    Neurosci Lett; 1992 Jan; 135(1):33-6. PubMed ID: 1542434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration.
    Matthews DA; Cotman C; Lynch G
    Brain Res; 1976 Oct; 115(1):1-21. PubMed ID: 974734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An autoradiographic study of the commissural and ipsilateral hippocampo-dentate projections in the adult rat.
    Fricke R; Cowan WM
    J Comp Neurol; 1978 Sep; 181(2):253-69. PubMed ID: 567658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesion-induced mossy fibers to the molecular layer of the rat fascia dentata: identification of postsynaptic granule cells by the Golgi-EM technique.
    Frotscher M; Zimmer J
    J Comp Neurol; 1983 Apr; 215(3):299-311. PubMed ID: 6189867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commissural connections of the dentate area in the rat.
    Hjorth-Simonsen A; Laurberg S
    J Comp Neurol; 1977 Aug; 174(4):591-606. PubMed ID: 903420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent changes in commissural field potentials in the dentate gyrus following lesions of the entorhinal cortex in adult rats.
    West JR; Deadwyler S; Cotman CW; Lynch G
    Brain Res; 1975 Oct; 97(2):215-33. PubMed ID: 1175043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.