These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4871905)

  • 41. Low molecular weight RNAs of post-ribosomal particles. Evidence that the particulate 4-S RNAs comprise a differential population of tansfer RNA.
    Hampel AE; Saponara AG; Walters RA; Enger MD
    Biochim Biophys Acta; 1972 May; 269(3):428-40. PubMed ID: 4557027
    [No Abstract]   [Full Text] [Related]  

  • 42. Glycyl-tRNA synthetase: an oligomeric protein containing dissimilar subunits.
    Ostrem DL; Berg P
    Proc Natl Acad Sci U S A; 1970 Dec; 67(4):1967-74. PubMed ID: 4923123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Equilibrium-dialysis studies on the binding of methionine, ATP and ATP-Mg2+ by the native and trypsin-modified enzymes.
    Fayat G; Waller JP
    Eur J Biochem; 1974 May; 44(2):335-42. PubMed ID: 4600363
    [No Abstract]   [Full Text] [Related]  

  • 44. Gram-scale purification of methionyl-tRNA and tyrosyl-tRNA synthetases from Escherichia coli.
    Bruton C; Jakes R; Atkinson T
    Eur J Biochem; 1975 Nov; 59(2):327-33. PubMed ID: 1107028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A calorimetric study of the binding of two feedback inhibitors to the glutamine synthetase from Escherichia coli.
    Ross PD; Ginsburg A
    Biochemistry; 1969 Dec; 8(12):4690-5. PubMed ID: 4904038
    [No Abstract]   [Full Text] [Related]  

  • 46. Leucyl-tRNA synthetase. Two forms of the enzyme: role of sulfhydryl groups.
    Rouget P; Chapeville F
    Eur J Biochem; 1971 Dec; 23(3):452-8. PubMed ID: 4333243
    [No Abstract]   [Full Text] [Related]  

  • 47. Role of sulfhydryl groups in activating enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328550
    [No Abstract]   [Full Text] [Related]  

  • 48. Role of sulfhydryl groups in activatin enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328235
    [No Abstract]   [Full Text] [Related]  

  • 49. Effects of specific divalent cations on some physical and chemical properties of glutamine synthetase from Escherichia coli. Taut and relaxed enzyme forms.
    Shapiro BM; Ginsburg A
    Biochemistry; 1968 Jun; 7(6):2153-67. PubMed ID: 4873174
    [No Abstract]   [Full Text] [Related]  

  • 50. Protein synthesis in rabbit reticulocytes: factors controlling terminal and internal methionine codon (AUG) recognition by methionyl tRNA species.
    Chatterjee NK; Bose KK; Woodley CL; Gupta NK
    Biochem Biophys Res Commun; 1971 May; 43(4):771-9. PubMed ID: 4935286
    [No Abstract]   [Full Text] [Related]  

  • 51. Selective incorporation of host cell methionyl-transfer RNA by RNA tumor viruses.
    Wang S; Kothari RM; Taylor MW; Hung PP
    Biochim Biophys Acta; 1974 Feb; 340(1):52-63. PubMed ID: 4363121
    [No Abstract]   [Full Text] [Related]  

  • 52. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methionyl-tRNA synthetase shows the nucleotide binding fold observed in dehydrogenases.
    Risler JL; Zelwer C; Brunie S
    Nature; 1981 Jul; 292(5821):384-6. PubMed ID: 7019723
    [No Abstract]   [Full Text] [Related]  

  • 54. Primary structure of a methionine transfer RNA from Escherichia coli.
    Cory S; Marcker KA; Dube SK; Clark BF
    Nature; 1968 Dec; 220(5171):1039-40. PubMed ID: 4883023
    [No Abstract]   [Full Text] [Related]  

  • 55. Studies on methionyl-tRNA synthetase. I. Effects of divalent and monovalent cations on methionyl-tRNA synthetase from Saccharomyces cerevisiae.
    Svensson I
    Biochim Biophys Acta; 1967 Sep; 146(1):239-52. PubMed ID: 6060467
    [No Abstract]   [Full Text] [Related]  

  • 56. The role of the anticodon in the interaction between methionyl-tRNA synthetase and bacterial initiator tRNA.
    Bruton CJ; Clark BF
    Nucleic Acids Res; 1974 Feb; 1(2):217-21. PubMed ID: 4607244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulatory properties of phosphoribosyladenosine triphosphate synthetase. Synergism between adenosine monophosphate, phosphoribosyladenosine triphosphate, and histidine.
    Klungsoyr L; Atkinson DE
    Biochemistry; 1970 Apr; 9(9):2021-7. PubMed ID: 4909873
    [No Abstract]   [Full Text] [Related]  

  • 58. Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features.
    Mechulam Y; Schmitt E; Maveyraud L; Zelwer C; Nureki O; Yokoyama S; Konno M; Blanquet S
    J Mol Biol; 1999 Dec; 294(5):1287-97. PubMed ID: 10600385
    [TBL] [Abstract][Full Text] [Related]  

  • 59. General structure/function properties of microbial methionyl-tRNA synthetases.
    Schmitt E; Panvert M; Mechulam Y; Blanquet S
    Eur J Biochem; 1997 Jun; 246(2):539-47. PubMed ID: 9208948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leucyl-tRNA synthetase. Purification of two interconvertible forms and evidence for an interconversion factor.
    Rouget P; Chapeville F
    Eur J Biochem; 1970 Jul; 14(3):498-508. PubMed ID: 4320292
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.