These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 4873865)

  • 41. The bacterial degradation of chloramphenicol.
    Holt R
    Lancet; 1967 Jun; 1(7502):1259-60. PubMed ID: 4165044
    [No Abstract]   [Full Text] [Related]  

  • 42. Transport of chloramphenicol into sensitive strains of Escherichia coli and Pseudomonas aeruginosa.
    Abdel-Sayed S
    J Antimicrob Chemother; 1987 Jan; 19(1):7-20. PubMed ID: 3104278
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Arch Microbiol; 2003 Nov; 180(5):362-6. PubMed ID: 14614545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chloramphenicol-, dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome 'R'.
    Okamoto S; Suzuki Y
    Nature; 1965 Dec; 208(5017):1301-3. PubMed ID: 4161995
    [No Abstract]   [Full Text] [Related]  

  • 45. Isolation and structure of kanamycin inactivated by a cell free system of kanamycin-resistant E. coli.
    Umezawa H; Okanishi M; Utahara R; Maeda K; Kondo S
    J Antibiot (Tokyo); 1967 Jul; 20(3):136-41. PubMed ID: 4863032
    [No Abstract]   [Full Text] [Related]  

  • 46. [Effect of erythromycin and its combination with protamine hydrochloride on binding of C 14-chloramphenicol with ribosomes of E.coli].
    Belousova II; Lishnevskaia EB; Tereshin IM
    Antibiotiki; 1973 Feb; 18(2):129-31. PubMed ID: 4590904
    [No Abstract]   [Full Text] [Related]  

  • 47. Reduction of chloromycetin and related compounds by Escherichia coli.
    SMITH GN; WORREL CS
    J Bacteriol; 1953 Mar; 65(3):313-7. PubMed ID: 13034743
    [No Abstract]   [Full Text] [Related]  

  • 48. Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system.
    Vazquez D
    Biochim Biophys Acta; 1966 Feb; 114(2):289-95. PubMed ID: 5329271
    [No Abstract]   [Full Text] [Related]  

  • 49. Chloramphenicol acetyl transferase formed by wild-type and complementing R factors in Escherichia coli K12.
    Foster TJ; Howe TG
    J Gen Microbiol; 1972 Aug; 71(3):575-80. PubMed ID: 4567226
    [No Abstract]   [Full Text] [Related]  

  • 50. [Interaction of E.coli ribosomes with chloramphenicol. Effect of protamine hydrochloride on binding of C14-chloramphenicol by ribosomes and antibiotic inhibition of polypeptide synthesis in acellular systems].
    Belousova II; Lishnevskaia EB; Tereshin IM
    Antibiotiki; 1973 May; 18(5):411-6. PubMed ID: 4592561
    [No Abstract]   [Full Text] [Related]  

  • 51. Regioselective Acetylation of C21 Hydroxysteroids by the Bacterial Chloramphenicol Acetyltransferase I.
    Mosa A; Hutter MC; Zapp J; Bernhardt R; Hannemann F
    Chembiochem; 2015 Jul; 16(11):1670-9. PubMed ID: 25999128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Episomal resistance to antibiotics in E. coli bacteria in Tadzhikistan].
    Riazanova AI
    Antibiotiki; 1971 Sep; 16(9):843-6. PubMed ID: 4257937
    [No Abstract]   [Full Text] [Related]  

  • 53. Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate.
    Bennett PM; Holms WH
    J Gen Microbiol; 1975 Mar; 87(1):37-51. PubMed ID: 1094097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of the chloramphenicol-sensitive and chloramphenicol-resistant steps in the initiation of DNA synthesis in E. coli B-r.
    Ward CB; Glaser DA
    Proc Natl Acad Sci U S A; 1969 Nov; 64(3):905-12. PubMed ID: 4905992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli.
    Lin J; Lee IS; Frey J; Slonczewski JL; Foster JW
    J Bacteriol; 1995 Jul; 177(14):4097-104. PubMed ID: 7608084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interrelationship between factors of colicinogeny and transmission stability in strains of Shigella sonnei and Escherichia coli.
    Kheinar AL; Tallmeister ET
    Sov Genet; 1971 Apr; 7(4):493-502. PubMed ID: 4950364
    [No Abstract]   [Full Text] [Related]  

  • 57. A photo-induced reaction of chloramphenicol with E. coli ribosomes: covalent binding of the antibiotic and inactivation of peptidyl transferase.
    Sonenberg N; Zamir A; Wilchek M
    Biochem Biophys Res Commun; 1974 Jul; 59(2):693-6. PubMed ID: 4604026
    [No Abstract]   [Full Text] [Related]  

  • 58. Inhibition of colicin B by enterochelin.
    Guterman SK
    Biochem Biophys Res Commun; 1971 Sep; 44(5):1149-55. PubMed ID: 4946186
    [No Abstract]   [Full Text] [Related]  

  • 59. Generation of higher multiple circular DNA forms in bacteria.
    Goebel W; Helinski DR
    Proc Natl Acad Sci U S A; 1968 Dec; 61(4):1406-13. PubMed ID: 4884687
    [No Abstract]   [Full Text] [Related]  

  • 60. Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives.
    Bi H; Bai Y; Cai T; Zhuang Y; Liang X; Zhang X; Liu T; Ma Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10339-48. PubMed ID: 24100682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.