These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4878702)

  • 1. Substrate synergism and phosphoenzyme formation in catalysis by succinyl coenzyme A synthetase.
    Bridger WA; Millen WA; Boyer PD
    Biochemistry; 1968 Oct; 7(10):3608-16. PubMed ID: 4878702
    [No Abstract]   [Full Text] [Related]  

  • 2. The formation and reactions of a nonphosphorylated high energy form of succinyl coenzyme A synthetase.
    Moyer RW; Ramaley RF; Butler LG; Boyer PD
    J Biol Chem; 1967 Oct; 242(19):4299-309. PubMed ID: 4863738
    [No Abstract]   [Full Text] [Related]  

  • 3. Succinyl coenzyme A synthetase of Escherichia coli. Effects of phosphoenzyme formation and of substrate binding on the reactivity and stability of the enzyme.
    Moffet FJ; Wang T; Bridger WA
    J Biol Chem; 1972 Dec; 247(24):8139-44. PubMed ID: 4565676
    [No Abstract]   [Full Text] [Related]  

  • 4. The preparation, properties, and reactions of succinyl coenzyme A synthetase and its phosphorylated form.
    Ramaley RF; Bridger WA; Moyer RW; Boyer PD
    J Biol Chem; 1967 Oct; 242(19):4287-98. PubMed ID: 4863737
    [No Abstract]   [Full Text] [Related]  

  • 5. Dephosphorylation of succinyl coenzyme A synthetase as related to enzyme specificity and catalytic intermediates.
    Robinson JL; Benson RW; Boyer PD
    Biochemistry; 1969 Jun; 8(6):2503-8. PubMed ID: 4895022
    [No Abstract]   [Full Text] [Related]  

  • 6. Succinyl phosphate and the succinyl coenzyme A synthetase reaction.
    Hildebrand JG; Spector LB
    J Biol Chem; 1969 May; 244(10):2606-13. PubMed ID: 4890228
    [No Abstract]   [Full Text] [Related]  

  • 7. The mechanism of the succinic thiokinase reaction. Effector role of desulfo-coenzyme A in succinyl phosphate formation.
    Grinnell FL; Nishimura JS
    Biochemistry; 1969 Feb; 8(2):568-74. PubMed ID: 4240088
    [No Abstract]   [Full Text] [Related]  

  • 8. Succinyl coenzyme A synthetase of Escherichia coli. Sequence of a peptide containing the active-site phosphohistidine residue.
    Wang T; Jurásek L; Bridger WA
    Biochemistry; 1972 May; 11(11):2067-70. PubMed ID: 4554896
    [No Abstract]   [Full Text] [Related]  

  • 9. Succinyl coenzyme A synthetase of Escherichia coli: initial rate kinetics of succinyl-CoA cleavage and isotope exchange studies.
    Moffet FJ; Bridger WA
    Can J Biochem; 1973 Jan; 51(1):44-55. PubMed ID: 4569898
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantitative appraisals of possible catalytic intermediates in the succinyl coenzyme A synthetase reaction.
    Benson RW; Robinson JL; Boyer PD
    Biochemistry; 1969 Jun; 8(6):2496-502. PubMed ID: 4895021
    [No Abstract]   [Full Text] [Related]  

  • 11. The kinetics of succinyl coenzyme A synthetase from Escherichia coli. A reaction with a covalent enzyme-substrate intermediate not exhibiting "ping-pong" kinetics.
    Moffet RJ; Bridger WA
    J Biol Chem; 1970 May; 245(10):2758-62. PubMed ID: 4913428
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for two types of subunits in succinyl coenzyme A synthetase.
    Bridger WA
    Biochem Biophys Res Commun; 1971 Mar; 42(5):948-54. PubMed ID: 4929931
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of succinyl-CoA synthetase as the major phosphorylated protein formed from ATP in Escherichia coli extracts.
    Sedmak J; Ramaley R
    Biochim Biophys Acta; 1968 Dec; 170(2):440-2. PubMed ID: 4885687
    [No Abstract]   [Full Text] [Related]  

  • 14. Formation of succinyl phosphate by reaction of phosphorylated succinic thiokinase with succinate.
    Nishimura JS
    Biochemistry; 1967 Apr; 6(4):1094-9. PubMed ID: 5340297
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the catalytic mechanism of Escherichia coli succinic thiokinase.
    Grinnell F; Nishimura JS
    Biochemistry; 1969 Oct; 8(10):4126-30. PubMed ID: 4899583
    [No Abstract]   [Full Text] [Related]  

  • 16. Nucleotide specificity of Escherichia coli succinic thiokinase. Succinyl coenzyme A-stimulated nucleoside diphosphate kinase activity of the enzyme.
    Murakami K; Mitchell T; Nishimura JS
    J Biol Chem; 1972 Oct; 247(19):6247-52. PubMed ID: 4568610
    [No Abstract]   [Full Text] [Related]  

  • 17. Catalysis of a step of the overall reaction by the alpha subunit of Escherichia coli succinyl coenzyme A synthetase.
    Pearson PH; Bridger WA
    J Biol Chem; 1975 Nov; 250(21):8524-9. PubMed ID: 1104606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions sequence of leucine activation catalysed by leucyl-RNA synthetase. 1. Kinetic studies.
    Rouget P; Chapeville F
    Eur J Biochem; 1968 Apr; 4(3):305-9. PubMed ID: 4871336
    [No Abstract]   [Full Text] [Related]  

  • 19. Succinate thiokinase of Escherichia coli. Purification, phosphorylation of the enzyme, and exchange reactions catalyzed by the enzyme.
    Grinnell FL; Nishimura JS
    Biochemistry; 1969 Feb; 8(2):562-8. PubMed ID: 4240087
    [No Abstract]   [Full Text] [Related]  

  • 20. An n.m.r. probe of succinyl-coenzyme A synthetase: subunit interactions and the mechanism of action.
    Vogel HJ; Bridger WA
    Biochem Soc Trans; 1983 Jun; 11(3):315-23. PubMed ID: 6347742
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.